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Abstract

We propose a framework for long-term cross-asset portfolio choice in which the esti-
mation of the covariance matrix is subject to climate risk. We model the future volatility
and correlation of assets as a linear function of three types of forward-looking variables:
their long-term future average, climate-aware projections of economic indicators, and
scenarios for the temperature anomaly. We analyze the shifts from a baseline 60/40 eq-
uity/bond allocation when taking climate risk into account. We find that these changes
are small and mostly favorable to bonds if the focus is on the estimation of risk com-
ponents. Including climate-driven expected returns in the optimization substantially
alters the compositions, but this time to the benefit of equities. In all cases, the risk-
adjusted returns decrease, often significantly, when taking climate impact into account.

1 Introduction

Climate change is now a ubiquitous concern in the asset management industry (Dietz
et al. (2016), Bolton and Kacperczyk (2021)). Yet, there is no unambiguous way to take it
into account in investment decisions and we refer to Chapter 5 of Coqueret (2022) for a
review of sustainable portfolio compositions.

Most often, the question is tackled at a very granular level, with estimates and expo-
sures for individual stocks and bonds, see, e.g., Bressan et al. (2022), Le Guenedal and
Roncalli (2022) and Faiella et al. (2023)), and especially when it comes to portfolios that
target net-zero emissions based on decarbonization paths (Barahhou et al. (2022)). Ag-
gregate strategies at the asset class level are scarce in the literature1 even though they are
essential to asset managers. The present paper seeks to partly fill this void.
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Our approach differs from most contributions in the way it seeks to estimate the future
components of the covariance matrix of the two asset classes. In the existing literature,
which we review below, academics and practitioners aim to reveal predictive relationships
between the dependent variables (risk, returns and correlations) and broad sets of pre-
dictors, including climate proxies. This is somewhat far-fetched, as current economic and
climate conditions may not be indicative of future developments. The markets, the econ-
omy and the environment are synchronously linked, which is why we propose a model
that binds risk to macro indicators in a contemporaneous manner. This is all the more rel-
evant that we consider long horizons and that, until now, climate shocks have had little
durable effects on prices and returns (Rebonato (2023)): most of the impacts are expected
to occur in the future.
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Figure 1: Diagram of the proposed framework.

Our main contributions are the following. First, we propose a framework that es-
timates asset class risks based on future projected and climate-based components such
as GDP growth, inflation, and temperature anomaly. In doing so, we break with most
approaches that rely on predictive specifications in which the risk ten years from now is
inferred from present economic values. Furthermore, we choose to outsource the special
task of economic forecasts to climate experts.

Our empirical results show that long-term volatility forecasts exhibit little dispersion
and are concentrated around 14.5% and 7% for US stocks and bonds, respectively. More-
over and crucially, the effect of potential climate-caused losses is fairly similar across the
two asset classes. With regards to long-term correlations, our estimates are mostly neutral
and between zero and 10% - whereas historical values have shifted between times at -30%
and periods at +30%.

As a consequence of this homogeneity in the impact of climate risks across asset classes,
asset allocations that are driven by risk considerations only are not too impacted by cli-
mate shifts. A target allocation of 60% in equities that ignore climate concerns will be
shifted by roughly 2-3%, mostly downwards. Indeed, a large majority of scenarios in this
case are slightly beneficial to bonds. The marginal changes in optimal allocation come
from the similar impact that climate damages have on both classes (moderately higher
risk, on average).

If, in addition to risk, we integrate climate-driven expected returns in a mean-variance
optimization, then the story is completely different. First, the 60/40 allocation can dramat-
ically change, e.g., either towards 40/60, or towards 80/20, depending on the scenarios.
In this case, most of the shifts are favorable to stocks because the climate impacts are more
stringent on bond returns compared to equity returns.

Our framework is flexible and allows the shrinkage of the distributions of predicted
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risks and returns towards climate-agnostic priors. This helps assess the sensitivity of our
results to changes in the inputs. We find our results are robust in the sense that large
deviations from the 60/40 portfolio require substantial adjustments in the distributions of
volatilities or expected returns. Moreover, models with quadratic impacts of temperature
anomaly do not change forecasts much, compared to linear impacts.

We also investigate shifts for investors that are much more risk averse and who have
an initial target allocation of 20% in equities. Our findings indicate that integrating climate
risks into both risks and returns in this case has a milder impact, with most scenarios
leading to a range of 15% to 25% for the equity pocket.

Lastly and crucially, a genuine concern is that of the impact of climate not only on
optimal portfolio composition, but on performance. We document that climate risks are
unambiguously detrimental to risk-adjusted returns. Accounting for potential physical
and transition losses can reduce the latter by up to 50%.

The paper is structured as followed. Section 2 outlines the literature review. The de-
tails of our methodology as well as the data used in our empirical work are presented
in Section 3. Our first empirical results (long-term models and predictions) are gathered
in Section 4. Their impact on asset allocation is investigated in Section 5, and robustness
check follow in Section 6. Finally, we conclude in Section 7.

2 Literature review

2.1 Variable dynamics

Handling uncertainty in financial and economic conditions is most often tackled by propos-
ing dynamic models of state variables, which we write in vector form xt at time t. The
most general formulation of such models is as follows:

f(xt) =
K∑

k=1
gk(xt−k) + et. (1)

As we will recall below, the most common form of such specifications is the vector auto-
regression (VAR) which sets f(x) = x, K = 1 and g(x) = Ax for some matrix A. In
some contributions, the focus is set on only one dependent variable (i.e., one component
of xt), for instance, asset return volatility and in this case the function f is simply a selec-
tion operator that discards the other variables. In this case, the model becomes a simple
predictive regression

yt =
K∑

k=1
gk(xt−k) + et, (2)

which may or may not be linear and/or additive. The error terms et are usually assumed
to follow the standard assumptions (i.i.d. Gaussian).

The most popular modelling choice is undoubtedly the VAR model and it commonly
includes both financial and climate-related variables. For instance, Shen et al. (2019) com-
bine 21 variables including temperature change and specify particular restrictions on their
autoregressive links. Cosemans et al. (2022) focus on equities and use Bayesian estima-
tions of a VAR model that combines returns, the log price-dividend ratio and the tempera-
ture anomaly (this is in fact just an adaptation of the framework of Avramov et al. (2018)).
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They propose 4 different priors depending on investor types and they outline portfolio
compositions that follow from an expected utility maximization routine. Bayesian VARs
are also used in Prosperi and Zanin (2023) and the variables include the market and green
(minus brown) factor returns, the carbon price, the short-term and long-term risk-free
rate, one inflation swap and the oil price. The above contributions rely on such dynamics
for the purpose of asset allocation. Financial returns are included in the list of state vari-
ables and their statistical properties (upon estimation of the models) are then exploited in
utility-maximizing schemes to derive optimal portfolio compositions. Lastly, VAR models
that include disaster instrumental variables are mentioned in Baker et al. (2023).

Examples of predictive regressions such as the one defined in Equation (2) are also
abundant, especially when it comes to forecasting financial risks. For instance, Bonato
et al. (2023a) forecast realized volatility in commodity exchange markets with climate-
based predictors (temperature, precipitation and wind).2 In a follow-up paper (Bonato
et al. (2023b)), they specify a bagging predictive model based on 14 climate predictors
that outperforms a benchmark prediction that relies on financial realized volatilities only.
Temperature data is ubiquitous and also used in Salisu et al. (2022) to explain tail risks
in S&P 500 returns (with extended GARCH models). Models that seek to predict future
volatility with past volatility only (Cardinale et al. (2021)) or with macro-economic pre-
dictors (Engle et al. (2013)) are also well documented.3 Lastly, there are also contributions
that seek to explain the cross-section of returns, based on proxies climate risk and atten-
tion, and we refer for instance to the panel models of Bolton and Kacperczyk (2021), to
Ardia et al. (2022) and to Le Tran et al. (2022).

Finally, it must also be underlined that VAR models can lead to expressions for con-
ditional variance. For example, it is shown in Avramov et al. (2018) that the variance of
future aggregate returns,4 conditional on current data is the sum of four terms: the vari-
ance of i.i.d. innovations for returns, a mean reversion term, an uncertainty component
about future mean returns and a proxy for estimation risk.

2.2 Climate scenarios and stress testing

The foundational assumption in climate-based asset pricing is that returns are dependent
on some state variables that characterize the future or current climate situation. Large
economic models, such as the one developed by the National Institute of Economic and
Social Research are built to take into account links between the financial and economic
sphere on one side and the environment on the other. Their National Institute Global
Econometric Model (NiGEM) is commonly used by many institutions, including the Net-
work for Greening the Financial System (NGFS) and thus many central banks. Climate
scenarios within the model are inspired by IPCC reports and we refer to Hantzsche et al.
(2018) for an overview of the modules upon which the model is built.

Another early attempt in this direction is the work of Bansal et al. (2017) in which the
authors propose a temperature-augmented long-run risks (LRR-T) equilibrium model in

2See also Campos-Martins and Hendry (2023) for a focus of climate risks on the oil and gas industries.
3The topic of volatility forecasting is vast and has generated an extensive literature. We refer to Poon

and Granger (2003) for a survey on mostly linear methods and to Ge et al. (2022) for a recent account of
models that rely on neural networks.

4We underline that we are interested in aggregate risks. For individual asset risks, we point for instance
to Bressan et al. (2023). This article leverages highly granular data on corporations in order to determine
risks at the intra-firm asset level (e.g., for individual production plants).
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which consumption generates emissions and temperature rises, which triggers random
natural disasters.5 Upon calibration, they find that “a one degree Celsius increase in tem-
perature leads to about -5% decline in equity valuations”. In a follow-up paper (Bansal et al.
(2021)), the authors derive an expression for conditional expected excess returns of assets.
It is driven by dividend beta and exposure to endogenous temperature variations.

Relatedly, Venturini (2022) surveys the literature that seeks to reveal links between
asset prices or returns and climate variables (temperature and precipitation). This review
shows the diversity in results because there are as many papers that conclude that climate
risk should be (or is) priced as those that find the opposite. Another important survey
is that of Campiglio et al. (2023). In their exhaustive summary, the authors discriminate
between two types of studies. First, they compile the contributions that have sought to
test if asset prices have been, in the past, affected by climate risks. Second, they focus on
forward looking methods and models that propose prospective analyses.

This is also exactly the aim of climate scenarios and stress testing. This latter topic is
almost exclusively focused on assessing the risks for the financial system. Acharya et al.
(2023) discuss the current approaches that are used by regulators (central banks) to assess
systemic risks stemming from climate-driven shocks, and their impact on the balance
sheets of banks. Climate stress testing is similarly surveyed by Reinders et al. (2023b),
in which the authors list six climate shocks, along with their propagation mechanisms
in different modelling frameworks, from IAMs to macroeconomy-focused approaches,
disaster models and valuation channels. The authors have another paper dedicated to
this latter subject (Reinders et al. (2023a)). Lastly, on this topic, Fuchs et al. (2023) run
causality tests (difference-in-difference) for which the treatment date is the launch of the
French climate stress test. They report that “stress tested banks charge higher interest rates for
borrowers with high-transition risk”.

Beyond asset pricing, similar models are also proposed for macroeconomic quantities,
such as output growth rates. For instance, Kahn et al. (2021) estimate an equation of the
form (1) where the dependent variable is the GDP growth of countries. The model comes
from an economic equilibrium and the results suggest a negative relationship between
output growth and persistent extreme changes (positive or negative) in temperature. Sim-
ilarly, Kalkuhl and Wenz (2020) run panel models of the form6

gt,i = α∆Tt,i + βTt,i∆Tt,i + γ1Tt,i + γ2T 2
t,i + X + et,i, (3)

where Tt,i includes temperature and precipitation levels of year t in region i, gt,i per capita
growth rate of output and X includes control variables and fixed effects. They report that
“1◦C temperature increase in a region with an annual mean temperature of 25◦C, reduces gross
regional product by about 3.5% in that region”. More recent estimates in Winter and Kiehl

5Their work is inspired from the literature on disaster risk. We for instance refer to Tsai and Wachter
(2015) who summarize the contributions on asset pricing under disaster risk. The idea is anticipative here
because the models are built on the premise that the shock comes from consumption and not from climate
directly (though both could be connected of course). Disaster risk is included via a compound Poisson pro-
cess within the diffusion of consumption and dividends. This allows the use of theoretical results on jump
diffusion process to derive an analytical form for the equity premium in such models. In fact, the volatil-
ity in non-turbulent times can also be computed, as is shown in Wachter (2013). It links the instantaneous
volatility with the intensity of occurrence of a disaster, but it is synchronous and not predictive.

6Zhao et al. (2018) propose a similar specification and discriminate between rich and poor areas in the i
index of the equation. In a similar fashion, Newell et al. (2021) lay out a model with higher orders, i.e., that
go beyond quadratic terms in temperature and precipitation.
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(2023) indicate contractions of global output of 30% or more by 2050, while Casey et al.
(2023) confirm a strong geographical heterogeneity of climate risks.

3 Method and data

3.1 Model specification

If we assume the position of an investor with mean-variance utility, we require long-term
estimates of average returns, volatilities and correlations for portfolio allocation. There
are at least three ways to compute these values:

• First, it is possible to estimate a VAR and derive long-term forecasts from current
values, as in Hoevenaars et al. (2008) or Shen et al. (2019). One drawback from this
approach is that long-term quantities are typically obtained by adding (compound-
ing) short-term ones, which is not necessarily accurate or stable.

• A second approach is to rely on a theoretical model for asset prices (and their returns)
that yields closed-form values for averages and variances, akin to Tsai and Wachter
(2015) for instance. The main issue is then that parameters are estimated on past
data, whereas the impact of climate change is expected to worsen in the future in
ways that is not yet reflected in historical data. Another problem is that these types
would need to be extended to several assets, in order to extract correlations.

• Finally, the third option, which we follow in this paper, is to determine simple re-
lationships between the long-term unknowns and other state variables, which are
themselves influenced by climate change. For instance, Engle et al. (2013) model
volatility as an augmented AR(1) model in which macroeconomic predictors are
added to the autoregressive component. In a very different spirit, Gostlow (2022)
models asset returns as a linear combination of risk factors plus an additional cli-
mate risk component. This approach has the added benefit of transparency; it is
tractable and simple to augment with further extensions to increase sophistication.

In the present article we seek to leverage expert-based forward-looking estimates, with
a particular focus on producing accurate forecasts for long-term volatilities and correla-
tions.

3.2 Data sources and statistics

The crux of our empirical work will be to estimate long-term variances and correlations
based on long-term averages, as well as on long-term GDP growth and inflation.7 To
estimate the model, we will need past values for these quantities. To craft forward-looking
forecasts, we shall rely on climate-driven predictions.

First, our primary source for forward-looking climate-based are the Phase 3 outputs
of the NiGEM model (see Hantzsche et al. (2018)). These outputs are determined by three
dimensions:

7Growth and inflation have been shown to drive rates in developed countries (Davis et al. (3121)). For
stock returns, we point to Boudoukh and Richardson (1993) (inflation) and Baker et al. (2005) and Faugère
and Van Erlach (2006) (growth). For the correlation between equities and bonds, we point to Campbell et al.
(2020) - though Duffee (2023) arrives at more nuanced conclusions.
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• the climate model, which can be either MESSAGEix-GLOBIOM (van Ruijven and
Min (2020)), GCAM (Wise et al. (2014)) or REMIND-MAgPIE (Hilaire and Bertram
(2020))

• the climate scenario which belongs to one of the following 6 categories: Below 2◦C,
Current Policies, Delayed Transition, Divergent Net Zero, Nationally Determined
Contributions (NDCs) and Net Zero 2050. All scenarios are relative to a baseline
model that ignores climate risks entirely.

• the severity that is taken into account: none (baseline), physical risks only, transition
risks only, and both physical and transition risks.

In Figure 2, we depict the corrections that climate models imply for long-term GDP
growth, compared to a baseline scenario. We observe clear heterogeneity across models,
whereas differences are less pronounced between transition and combined risks in terms
of severity. This is due to the fact that physical risk, according to the models, has a milder
impact on economic output in the long run. The equivalent plot for equity returns is
postponed to Figure 16 in Appendix A.4.

Below 2°C Current Policies Delayed transition Divergent Net Zero NDCs Net Zero 2050
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Figure 2: Climate adjustment for US GDP growth. We plot the time-series of correction
for GDP growth implied by climate models, scenarios and severities compared to the baseline
situation (in %). The values are in percentages of adjustment to the baseline growth value. For the
period 2023-2033, it is equal to +2.2%. Hence a −10% adjustment implies a growth of +2%.

For past (realized) series, there are three components: economic (GDP and inflation),
climate (temperature anomaly) and financial (asset returns). For the data on temperature
anomaly, we refer to the National Centers for Environmental Information from which
we extract monthly series for all 48 states in mainland US. The series are then simply
averaged to obtain an aggregate value at the national level. The temperature anomaly
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(∆T henceforth) is then averaged over a 10 year horizon and we provide an illustration
thereof in Figure 13 in the Appendix.

With regard to financial time-series, we work with equity and bond data from the
Stocks, Bonds, Bills, and Inflation (SBBI) Data provided by Morningstar via the CFA Re-
search Foundation Investment Data Alliance. The time-series of the 10 year average and
standard deviation of returns is plotted in Figure 14, along with the corresponding long-
term correlation. For the latter, we observe two regimes in which the correlation is either
around +30% or in the vicinity of -30%. Similar patterns are obtained in Brixton et al.
(2023), Molenaar et al. (2023) and Duffee (2023), but for the latter the effect is reversed be-
cause the correlation is with Treasury yields. While the plot shows points slightly before
1960, all estimations of coefficients will henceforth rely on samples that start in January
1960 and end in April 2023.

Finally, the last inputs we require are of economic type, namely GDP growth and in-
flation. They are obtained from the portal of the Federal Reserve of Saint Louis with the
GDP and CPIAUCSL identifiers. We plot the corresponding time-series in Figure 15 in the
Appendix. Henceforth, it is naturally the relative variations of these indices that are used
as independent variables in our models. For example, we will use the notation ∆GDPt

for the rate of increase GDPt/GDPt−1 − 1, and the same will apply to inflation.

4 Results

4.1 Linking volatility and correlation with the economy

The present section focuses volatilities and correlations. The integration of estimates for
long-term returns will be treated as an extension of our baseline results (in Section 5.3).
While many contributions seek to unveil predictive relationships between the volatility
and state variables, we propose to work with synchronous regressions of the form

σt = a + bµµt + bgdp∆GDPt + bcpi∆CPIt + bT ∆T + et, (4)

where µt is the long-term asset return, ∆GDP is GDP (relative) growth, ∆CPI is inflation
and ∆T is temperature anomaly. All terms are synchronous, i.e., computed over the same
rolling periods of 10 years. Naturally, by construction, these variables are all highly auto-
correlated. From an inference standpoint, this is a major issue because of biases in OLS
estimators, as revealed in the seminal work of Stambaugh (1999) (see also the more recent
results of Boudoukh et al. (2022)). However, from a predictive perspective, this is much
less an issue. For the sake of completeness, we provide four types of results in Table 1.

First, we propose two kinds of models: those that do not include long-term return
averages µt as predictors (Model A), and those that do (Model B). This is because we
want to be able to propose models that are entire free from average return estimations,
which is the case of Model A. More fundamentally, we are agnostic with regard to the
possible link between risk and returns and wish to explore both options.8

Next, for each model, in Panel 1, we document the estimates from standard OLS re-
gressions. In addition, in Panel 2, to correct for the autoregressive bias in estimates,

8The risk-return relationship is an old debate in financial economics with abundant and often contra-
dictory results. We refer for instance to the contributions of Gehr (1979), Campbell (1996), Malkiel and Xu
(1997), Harrison and Zhang (1999), Whitelaw (2000) and Linton and Perron (2003) - to name but a few.
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Model A: without long-term averages

Panel 1: Standard OLS
Equities Bonds

Variable Estim. Sd. Err. t-stat. p-val R2 Estim. Sd. Err. t-stat. p-val R2

Intercept 0.145 0.000 407.93 0.000 0.616 0.071 0.000 185.76 0.000 0.710
∆CP It 0.965 0.054 18.02 0.000 0.616 1.373 0.057 23.90 0.000 0.710
∆GDPt -0.456 0.075 -6.05 0.000 0.616 -0.756 0.081 -9.35 0.000 0.710
∆T 0.008 0.001 6.70 0.000 0.616 0.008 0.001 6.36 0.000 0.710

Panel 2: Amihud and Hurvich (2004) regressions
Intercept 0.145 0.000 407.91 0.000 0.616 0.071 0.000 193.12 0.000 0.731
∆CP It 0.977 0.055 17.84 0.000 0.616 1.400 0.057 24.78 0.000 0.731
∆GDPt -0.473 0.077 -6.13 0.000 0.616 -0.792 0.080 -9.94 0.000 0.731
∆T 0.008 0.001 6.36 0.000 0.616 0.007 0.001 6.08 0.000 0.731

Model B: with long-term averages

Panel 1: Standard OLS
Equities Bonds

Variable Estim. Sd. Err. t-stat. p-val R2 Estim. Sd. Err. t-stat. p-val R2

Intercept 0.145 0.000 421.85 0.000 0.641 0.071 0.000 224.87 0.000 0.802
µt -0.051 0.007 -7.31 0.000 0.641 0.206 0.011 18.79 0.000 0.802
∆CP It 0.906 0.052 17.30 0.000 0.641 1.103 0.050 22.24 0.000 0.802
∆GDPt -0.396 0.073 -5.40 0.000 0.641 -0.608 0.067 -9.04 0.000 0.802
∆T 0.008 0.001 7.39 0.000 0.641 0.006 0.001 5.61 0.000 0.802

Panel 2: Amihud and Hurvich (2004) regressions
Intercept 0.145 0.000 425.56 0.000 0.647 0.071 0.000 227.36 0.000 0.806
µt -0.052 0.007 -7.42 0.000 0.647 0.205 0.011 18.74 0.000 0.806
∆CP It 0.925 0.053 17.43 0.000 0.647 1.127 0.050 22.50 0.000 0.806
∆GDPt -0.422 0.074 -5.67 0.000 0.647 -0.640 0.068 -9.39 0.000 0.806
∆T 0.008 0.001 6.99 0.000 0.647 0.005 0.001 5.17 0.000 0.806

Table 1: Synchronous links between long-term volatility and macroeconomic indica-
tors. We report the estimates from regression (4) for equities (left) and bonds (right). We present
models without long-term averages first (Model A) and with them next (Model B). The upper
sub-panels pertain to simple OLS estimators, and the second ones to the augmented method from
Amihud and Hurvich (2004). The sample runs from January 1960 to April 2023. Independent vari-
ables are demeaned before estimation and the corresponding means are 10.70% for stock returns,
6.41% for bond returns, 3.62% for inflation, 6.39% for economic growth and 71.79% for ∆T . The
reported R2 are the adjusted R2.

we run augmented regressions as advised in Amihud and Hurvich (2004). The idea
is to start by estimating a first order vector-autoregression (VAR(1)) for the predictors:
Xt = a+Xt−1A+et and to add the fitted residuals êt in the original model (4). Note that
there is one vector of residual values for each predictor.

Fortunately, as we can see in the table, the various specifications do not move the
numbers much: a token of stability for our results. We note that all coefficients are statisti-
cally significant at all the usual levels of confidence. Consequently, the simple OLS model
seems robust enough and we will henceforth stick with it for our predictions in the next
section.

In terms of raw coefficients, we see that for equities, volatility is negatively linked to
long-term returns and GDP growth but positively linked to inflation and rising tempera-
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ture. The only difference for bonds is with long-term average (µt): in this case the link is
positive.9 We underline that working with demeaned series allows to interpret the inter-
cept in the models as the historical average of the dependent variable. A last comment on
pure fit: the reported adjusted R2 are quite high, which comes at least partly from the au-
tocorrelation in the variables due to overlapping samples. Persistence is problematic for
inference but beneficial to plain forecasting. In addition, the fit is higher for bonds than
for equities and adding long-term return averages (µt in Model B) is also more beneficial
to bonds than to stocks.

The next step is to perform a similar estimation for long-term correlation between the
two asset classes. In this case, we need to make some changes compared to the specifica-
tion of Equation (4). First, we acknowledge that correlation is a bounded and oscillating
indicator (see Figure 14), whereas the temperature anomaly is bound to be increasing in
the foreseeable future. Hence, we should not include ∆T in the model. Just as in the case
for volatility, it is not obvious whether adding the long-term return averages is a good
idea or not, hence we propose specifications without (Model A) and with them (Model
B). Lastly, we propose an intermediate choice that is inspired from Molenaar et al. (2023)
and includes inflation and the long-term bond return as independent variables (Model
C). The results are compiled in Table 2 and just as before in Table 1, there is no major shift
when we take into account the Amihud and Hurvich (2004) correction in the augmented
model.

Variable Estim. Sd. Err. t-stat. p-val R2 Estim. Sd. Err. t-stat. p-val R2

Model A: model without long-term averages
Standard OLS Amihud and Hurvich (2004) model

Intercept 0.056 0.007 8.56 0.000 0.601 0.056 0.006 8.68 0.000 0.609
∆CP It 2.215 0.684 3.24 0.001 0.601 2.232 0.683 3.27 0.001 0.609
∆GDPt 8.514 0.670 12.71 0.000 0.601 8.525 0.668 12.76 0.000 0.609

Model B: model with long-term averages
Standard OLS Amihud and Hurvich (2004) model

Intercept 0.056 0.005 12.02 0.000 0.798 0.056 0.005 12.11 0.000 0.800
µ

equities
t 0.507 0.107 4.71 0.000 0.798 0.486 0.109 4.47 0.000 0.800

µbonds
t 3.899 0.184 21.16 0.000 0.798 3.954 0.186 21.26 0.000 0.800

∆CP It -3.816 0.602 -6.34 0.000 0.798 -4.013 0.606 -6.63 0.000 0.800
∆GDPt 13.293 0.551 24.12 0.000 0.798 13.454 0.554 24.28 0.000 0.800

Model C: Molenaar et al. (2023) - inspired
Standard OLS Amihud and Hurvich (2004) model

Intercept 0.056 0.007 8.50 0.000 0.596 0.056 0.007 8.49 0.000 0.596
∆CP It 8.729 0.333 26.19 0.000 0.596 8.729 0.333 26.18 0.000 0.596
µbonds

t 2.554 0.209 12.23 0.000 0.596 2.555 0.209 12.21 0.000 0.596

Table 2: Synchronous links between long-term correlation and macroeconomic indica-
tors. We report the estimates from regression (4) with or without two regressors for long-term
averages depending on asset class (µequities

t for equities and µbonds
t for bonds), as well as with or

without intercepts. The left panel pertains to simple OLS estimators, while the right one to the
augmented method from Amihud and Hurvich (2004). Dependent variables were de-meaned be-
fore estimation. The R2 are adjusted.

9The negative coefficients for equities is consistent with the aggregate low volatility anomaly (see, e.g.,
Glosten et al. (1993)), though it has mostly been documented recently in the cross-section of stocks: Ang
et al. (2006), Ang et al. (2009), Baker et al. (2011), Li et al. (2016) and Beveratos et al. (2017).
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Several important comments are in order. First, GDP growth and long-term average
returns of both asset classes are positively linked to correlation. However, for inflation,
the link depends on the set of variables included in the model. In the full model, inflation
is negatively related to the stock-bond correlation, but in the other two, the relationship
reverses.

Given the links revealed in Tables 1 and 2, we are able to plug both the long-term
returns and the climate-driven forecasts for the economic indicators (raw values in Figure
15). This will produce the missing parts of the puzzle, namely long-term volatilities and
correlations. Given the non-negligible disagreement across the correlation models, we
will include all three for the sake of completeness.

4.2 Long-term predictions

We leverage the models of Table 1 and 2 for the sake of forecasting. To this purpose,
we plug long-term estimates of the independent variables in the models. For inflation,
GDP growth and stock returns, we resort to climate-based values stemming from NiGEM
(Phase 3) and for temperature, to IAM outputs.10 For bonds, we take NiGEM estimates for
long term yields and compute returns to be the average yield over the investment horizon
plus price return, i.e.,

µbonds
t = 1

H

H−1∑
s=0

ŷt+s + D

H
(ŷt − ŷt+H), (5)

where ŷt is the predicted bond yield in a given climate-driven scenario. For simplicity,
we assume that the duration of the bond is equal to the investment horizon i.e. D = H
(which matches the case of a zero coupon bond with a constant maturity H).

In addition, to add more flexibility in estimates and generate more granularity, we
resort to shrinkage in the following form

vi,n = aiv
∗ + (1 − ai)vn, (6)

where ai ∈ (0, 1) is the shrinkage intensity, vn is the value (volatility or correlation) of the
nth model-scenario and v∗ is the anchor value.11 This enables a Bayesian-type of mixture
in which the data-driven estimates can be blended with a prior value, thereby allowing
more flexibility. In our empirical application, we choose the ai to be all percentages be-
tween 0% and 80% to avoid blends that are too concentrated towards the target. This
makes 81 intensities, which, combined with the 162 scenarii makes 13,122 estimates in
total for one given anchor value v∗.

In Figure 3, we produce the distribution of 10 year volatilities (2023-2033) under the
models from the standard OLS coefficients of Model A (panel 1) in Table 1. In the upper
panels, we illustrate the difference between past realized and future predicted volatil-
ity. The contrast in support is striking: for equities, historical volatility has ranged from
11% to 17% with an average of 14.5%, whereas our forecasts lie mostly between 14% and
15%, with thin tails around 18%. Similar conclusions hold for bonds as well, with a sup-
port mostly between 6% and 8% for predicted volatility. The forecasted risks from Model
B which includes long-term returns are postponed to Figure 17 in Appendix A.5. The
results are essentially identical with a minor shift of volatilities which are slightly less
conservative in this latter figure.

10The latter are retrieved on the AR6 scenario explorer.
11We will also sometimes call it the prior target or prior value.

11
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Figure 3: Long-term volatility prediction. We plot the distribution of long-term forecasts for
volatility (2023-2033) across the two asset classes with Model A panel 1 from Table 1. The upper
panels compare historical values with the predicted ones while the lower ones focus on the latter
but show the shift that occurs when considering various levels of climate severity. The priors
used when post-shrinking in (6) are the historical means (1960-2023): 0.145 for equity volatility
and 0.071 for bond volatility. The intensities αi are between 0.0 and 0.8 with 0.01 increments. The
vertical lines in the upper panels mark the average predictions in the baseline scenarios (agnostic
to climate change): 14.2% and 6.9% for equities and bonds, respectively.

One important takeaway from these figures is that both asset classes see a very similar
pattern in the shift of their risk: a minority of scenarios predict lower volatility and a
majority of them indicate marginally larger risks. A very small proportion of cases imply
much larger risks. The fact that the impact of climate is relatively similar for both asset
classes (a consequence of the similarity of signs and magnitudes from Model A of Table
1) will explain much of our results below.

In the lower panels of Figure 3, we show the distribution of predicted volatility, but
conditional on the severity of climate scenarios. As the severity increases from baseline
to combined (physical plus transition risk), the distribution slowly shifts to the right and
the average risk increases, as one would expect.

In Figure 4, we depict the distribution of predicted correlation at the 10 year horizon.
In line with our analysis above, we provide three different specifications, the last one
being inspired by a recent publication. Notably, we remark that the historical correlation
has a much wider support, with two modes around ±0.3 (see the bottom panel of Figure
14). Hence, the predicted correlations seem to represent some middle ground and are
more concentrated around zero.
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Figure 4: Distribution of long-term correlation predictions. We plot the distribution of
long-term forecasts for correlation between the two asset classes. The models are those of Table
2. The grey distribution corresponds to all models, shrunk towards an agnostic value equal to the
realised (past) average of 5.6% - a relatively agnostic prior. The shrinkage intensities are percents
between 0.0 and 0.8 (81 values in total). The vertical dashed line highlights the historical average
correlation and the green line at the bottom is the historical density. Predictors were demeaned
before the forecast.

5 Implications for long-term asset allocation

5.1 Optimal allocation without expected returns

In the present paper, we are mostly interested in the risk component of portfolio opti-
mization. Below, we present a method that allows to bypass the specification of expected
returns in optimal mean-variance allocation. Let us assume an investor with a quadratic
utility and budget constraint who seeks to solve the following

max
w

{
w′µ − γ

2 w′Σw

}
, s.t. w′e = 1 (7)

The first order condition (FOC) is µ − γΣw + λe = 0, where λ is the Lagrange multiplier
set to satisfy some constraint and e is a vector of ones, with e′ being the transpose of e.
The optimal weights have the form

w∗ = γ−1Σ−1(µ + λe). (8)

Our goal in this section is to identify the changes to a benchmark portfolio, which we take
to be 60%/40% in equity/bonds, when there is a climate shock to the estimation of the
covariance matrix Σ. But we do not know the two values of the expected return vector
µ. The only thing we need is an arbitrary long-term average return, which we fix at some
unspecified constant m̄. From (8), we have that µ = γΣw − λe, and we assume we do not
know the level of λ, e.g., if we overlook the constraint. This level can be fixed to match the
target return m̄. In this case, we obtain λ̃ = γwΣw − m̄ (multiplying the last expression by
w′, with m̄ = w′µ). Hence, the expected returns that are required to reach the target m̄ are
given by

µ̃ = γΣw − λ̃e. (9)
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Now, suppose there is a climate shock and the new (updated) covariance matrix shifts
to Σ̃ - but the risk aversion stays the same. The new optimal weights will be:

γ−1Σ̃−1(µ̃ + ξe) = γ−1Σ̃−1(γΣw − λ̃e + ξe) = γ−1Σ̃−1(γΣw + λ̂e), (10)

where the adjusted Lagrange multiplier λ̂ = ξ − λ̃ should be chosen to saturate the budget
constraint. Hence, the new portfolio composition is not driven by µ, nor by the arbitrary
m̄. Moreover, it is easy to show that λ̂ is in fact proportional to γ,12 hence the optimal allo-
cation is also unrelated to γ. It depends only on the two covariance matrices (Σ before the
climate adjustment and Σ̃ after) and on the original portfolio composition w = (0.6, 0.4).

In Figure 5, we show the distribution of optimal portfolio weights when starting from
a 60%/40% allocation and then switching the baseline covariance matrix with all those
that incorporate climate-driven shocks. A large majority of equity allocation shifts lie in
a range of 57%-61%, which is a relatively narrow interval. Nevertheless, a few scenarios
lead to more pronounced changes, reducing the equity exposure to 53% of the portfo-
lio. We underline that the largest shifts are those that include transition risks, which are
considered more financially material by the climate models.
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Figure 5: Climate-based adjustment to the 60%/40% allocation - without long-term re-
turns. We plot the shift in optimal portfolio composition when taking into account climate-based
values for volatilities and cross-asset correlations. The forecasts come from Model A in Table 1
(volatility) and Model A in Table 2 (correlation). We report the distribution (across scenarios)
of the equity share of the portfolio weights given in Equation (10). Σ represents the baseline co-
variance matrix and Σ̃ the one that stems from predictions with climate-driven corrections. The
density lines are depicted for three levels of correction and three temperature scenarios from the
IAM output. The vertical line represents the 60% starting point of the target allocation.

These outliers to the left of the distributions, which are all tied to transition and com-
bined corrections, come from scenarios from the MESSAGEix-GLOBIOM model and the
Delayed transition scenario. The latter imply a volatility for equities of 18%, which are the
most pessimistic, as shown in Figure 3. The correlation is at 8% for these scenarios, which
are also the least diversifying for model B in Figure 4.

12The budget constraint imposes 1 = γ−1e′Σ̃−1(γΣw + λ̂e), i.e., λ̂ = γ (1−e′Σ̃−1Σw)
e′Σ̃−1e

.
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5.2 Covariance matrix based on long-term returns

In the previous subsection, we focused on risks that were driven by economic and temper-
ature indicators solely. In tables 1 and 2, we proposed models that also rely on long-term
return predictions to explain volatilities and correlations. Below in Figure 6, we plot the
shift in allocation that correspond to the following models: model B in Table 1 and models
A and C in Table 2.
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Figure 6: Climate-based adjustment to the 60%/40% allocation - with long-term returns
only impacting the covariance matrix. We plot the shift in optimal portfolio composition
when taking into account climate-based values for volatilities and cross-asset correlations. The
forecasts come from Model B in Table 1 (volatility) and Models B and C in Table 2 (correlation).
We report the distribution (across scenarios) of the equity share of the portfolio weights given in
Equation (10). Σ represents the baseline covariance matrix and Σ̃ the one that stems from predic-
tions with climate-driven corrections. The density lines are depicted for three levels of correction
and three temperature scenarios from the IAM output. The vertical line represents the 60% start-
ing point of the target allocation.

In this case, the shifts are slightly more pronounced, with most of the support between
56% and 62%. The long left tail persists and is associated to the same scenario as in Sub-
section 5.1 and even reaches values of 50% for the equity allocation. One common feature
with Figure 5 is that the most extreme shifts are associated with transition risks, not with
physical ones. This is in line with previous results in the literature (Faccini et al. (2023)).

5.3 Allocation with NiGEM expected returns

The present paper is focused on the impact of climate change on the risk of asset classes,
not on their expected returns. Nevertheless, the latter are naturally paramount to in-
vestors. Hence, in this section, we document the change to mean-variance optimization
(MVO) schemes that take expected returns as inputs. The latter are notably hard to esti-
mate and we point to Ma et al. (2023) for a recent overview on this matter.

More specifically, because MVOs are notoriously leveraged, we introduce an addi-
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tional constraint to reduce this effect13

max
w

{
w′µ − γ

2 w′Σw

}
, s.t. w′e = 1, w′w ≤ δ, (11)

which is solved by

w∗ = (γΣ + 2ηI)−1(µ + λe), (12)

where the two constants λ and η are chosen so as to saturate the constraints (λ for the
budget and η for diversification through δ in (11)). Simply put, the covariance matrix and
the vector of expected returns are shrunk. In the asymptotic case when λ, η → ∞, we
obtain a uniform allocation, w = (1/2, 1/2). In order to obtain a 60/40 allocation for the
baseline estimates from the model, we fix γ = 0.5 and η = 0.028. This makes a rather low
risk aversion, but larger values will be considered in Section 6.3 below.

There are an infinite number of choices for expected returns. To remain consistent with
climate-driven estimates, we pursue below an exercise that take as inputs the long-term
returns generated by the NiGEM model (Phase 3). This is an arbitrary choice and serves
only as illustration of the flexbility of our approach. We do not attest to their predictive
power or accuracy, which is outside the scope of this paper.

First, in the left panel of Figure 7, we show the distribution of the expected returns
generated by the NiGEM model, which we have shrunk according to Equation (6) with
0.7% as prior for bond returns and 2.7% for equities.14 These values are the averages
across all climate scenarios (relatively agnostic priors) and correspond to the µ vector
in Equations (11) and (12). With the vertical dashed lines, we also provide the baseline
estimates, which are those that do not take into account physical and transition risk (1.94%
for bonds and 3.29% for equities).

In the right panel, we depict the shift in allocation between the baseline scenario and
all the climate scenarios and adjustments. The parameters in the optimization were cal-
ibrated to yield a 60/40 split. Again, we observe different patterns between corrections.
The corrections that are based on physical damages only are much more favorable to
stocks and almost all changes imply higher equity exposure. In contrast, the other two
corrections can be much more favorable to bonds, with some extreme scenarios for which
equities make up less than half of the portfolio. Clearly, the results are much more sen-
sitive because the range of the shifts is much larger than in Figures 5 and 6. This was
predictable, given the sensitivity of optimal weights to expected returns (see, e.g., Chopra
and Ziemba (1993)).

It is crucial to understand the major difference between Figure 7 and Figures 5 and 6,
which is that the former predicts much more favorable outcomes for stocks compared to
the other two. This can be rationalized with the help of the left panel of Figure 7 (which is
inferred from the values of Figure 16). Indeed, we see that the shifts, mostly to the left of
the distributions compared to the baseline values (dotted vertical lines) is more marked
for bonds. Therefore, the climate models predict that physical and transition risks are
slightly more detrimental for fixed-income securities than for stocks. This is why, in this
case, climate-driven portfolios will favor stocks over bonds.

13We refer to Jagannathan and Ma (2003) and Coqueret (2015) for a detailed account on why such regu-
larized optimization can be beneficial. We follow the latter reference here.

14Note that this value is based on price returns only and thus omits dividends, which may explain its low
magnitude compared to historical levels.
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Figure 7: Adjustments with expected returns. In the left plot, we display the distribution of
shrunk expected returns. The shrinkage intensities are between 0.0 and 0.8 (21 values in total). The
vertical dashed lines depict the baseline values, i.e., those that correspond to the scenario without
transition nor physical risk. In the right plot, we feature the shift in allocation when plugging
NiGEM expected returns (µ) in (12). The initial parameters η = 0.028 and γ = 0.5 are calibrated so
as to obtain a 60/40 mix for the baseline climate scenario.

5.4 Projected performance

The right panel of Figure 7 seems to indicate that climate-based portfolios should be
more tilted towards equities, hence more risky. In this subsection, we document the
risk-adjusted performance of portfolios under the assumption that returns and covari-
ance matrices are the ones from the previous subsection.

In Figure 8, we show the projected risk-adjusted return of portfolios, depending on the
proportion invested in stocks. The lines represent the median values across all scenarios
and forecasts used in Section 5.3. The shaded areas mark the 10%-90% quantiles. For the
baseline scenarios, there is a small interval because we consider 3 temperature levels (5%,
median, and 95% quantiles in IAM outputs) in our long-term forecasts for volatilities and
correlations (which come from the models in Table 1 and 2).

Plainly, the best performance when accounting for climate impact (a ratio of 0.25) is
reached at around 30% equity for the top 90% green scenarios. Reversely, the worst one
if we don’t consider physical and transition risk is also 0.25, obtained at 80%+ equity
levels on the orange curve. Hence, as expected, climate risk is clearly detrimental to
performance. It is noteworthy to underline that the shaded area is the thinnest around
60% of equity: this is where the dispersion across scenarios is the smallest.
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Figure 8: Projected risk-adjusted performance. We plot the ratio of expected returns to
volatility for various levels of equity allocation (x-axis). The straight lines show the median across
all scenarios and values from Section 5.3. The shaded areas mark the [0.1, 0.9] quantile zone.

6 Robustness checks

6.1 Quadratic impact of temperatures

In many models including the DICE of Nordhaus (2014, 2017), the economic damages
incorporate a quadratic term of the temperature anomaly. Below, in Table 3, we propose
estimates for an extension of Equation (4) that integrates such an effect. The quadratic
term is associated with a negative term that mimics that of ∆T , which makes sense be-
cause the two variables are positively correlated. For the sake of completeness, we also
provide in Panel B results when removing ∆T .

The results are comparable with those of Table 1. Notably, the coefficients for inflation
remain positive (inflation increases risk) and those of growth negative (economic expan-
sion reduces risk). The R2 have the same magnitude as before, and models for bonds
seem to provide a better fit, compared to those for stocks.

Furthermore, in Figure 9, we show the corresponding predicted long-term volatilities
for both asset classes. The differences with Figures 3 and 17 are subtle, thereby highlight-
ing the stability of our initial results to a small change in model and forecasting protocol.

6.2 Shrinkage priors

Our framework allows for some flexibility in a Bayesian-like fashion. Indeed, while the
estimates produced by the expert forecasts rely on both extensive data and sophisticated
models, an investor might want to shift them based on her priors. For instance, in Section
5.3, we are able to shift the distribution of expected returns via shrinkage. We can also do
this for volatility estimates, as is shown in Figure 10. Therein, we fix the prior for bond
volatility to 7% and we test four values for equity priors from 13% to 16%, shown with
colors.
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Equities Bonds
Variable Estim. Sd. Err. t-stat. p-val R2 Estim. Sd. Err. t-stat. p-val R2

Panel A: with ∆T
Intercept 0.145 0.000 443.014 0.000 0.675 0.071 0.000 190.185 0.000 0.723
∆CP It 0.788 0.052 15.279 0.000 0.675 1.267 0.059 21.594 0.000 0.723
∆GDPt -0.199 0.073 -2.734 0.006 0.675 -0.603 0.083 -7.281 0.000 0.723
∆T 0.013 0.001 11.414 0.000 0.675 0.011 0.001 8.439 0.000 0.723
(∆T )2 -0.010 0.001 -11.689 0.000 0.675 -0.006 0.001 -6.122 0.000 0.723

Panel B: without ∆T
Intercept 0.145 0.000 409.391 0.000 0.619 0.071 0.000 181.925 0.000 0.698
∆CP It 1.228 0.037 33.152 0.000 0.619 1.638 0.041 40.210 0.000 0.698
∆GDPt -0.934 0.037 -25.518 0.000 0.619 -1.221 0.040 -30.352 0.000 0.698
(∆T )2 -0.006 0.001 -7.118 0.000 0.619 -0.003 0.001 -2.807 0.005 0.698

Table 3: Including squared temperature anomalies in volatility models. We report the
estimates from regression (4) (with added (∆T )2 term) for equities (left) and bonds (right). The
sample runs from January 1960 to April 2023. Independent variables are demeaned before estima-
tion and the corresponding means are 10.70% for equity returns, 6.41% for bond returns, 3.62% for
inflation, 6.39% for economic growth, 71.79% for ∆T and 53.86% for (∆T )2. The reported R2 are
the adjusted R2.
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Figure 9: Long-term volatility prediction with quadratic temperature effect. We plot the
distribution of long-term forecasts for volatility across the two asset classes with Model A panel
1 from Table 3. The priors used when post-shrinking in (6) are the historical means (1960-2023):
0.145 for equity volatility and 0.071 for bond volatility. The intensities αi are between 0.0 and 0.8
with 0.01 increments. The vertical lines in the upper panels mark the average predictions in the
baseline scenarios (no adjustment).

Figure 10 shows the level of prior (which shifts the distribution of volatility) that is
required to significantly favor or penalize bonds (or equities). With a 13% volatility for
equities, we are clearly in a territory that is favorable for equities. With a 16% volatility, it
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Figure 10: Alternative priors for volatilities. We plot the distribution of the equity share
when shifting from the baseline scenario to a climate adjusted one. The calibration is such that the
baseline equity weight is 60%. Each color is associated with a different value of prior for equities,
while the one for bonds is fixed to 7%.

is the opposite. Between these two extreme values, there is a continuum of distributions
and we reach an equilibrium (the allocation stays the same at 60/40) at 14.5%.

In Figure 11, we show the impact of alternative priors for expected returns on the shift
of allocation when taking into account climate scenarios both for the estimation of the co-
variance matrix and the (shrunk) expected returns. It shows that a distribution of changes
that would be balanced around the initial 60/40 target requires a strong tilt: bonds need
to have expected returns that are barely below those of equities (3.2% versus 3.5%).

6.3 More conservative targets

In this section, we are interested in the change in allocation when starting from less risky
initial positions. To ease the exposition, we will fix η to its previous value (η = 0.028) and
link the riskiness of the portfolio only to the risk aversion. When γ = 0.5, we have that
the initial share of equities is equal to 60%. We then increase γ in order to reach shares of
40% and 20%. This requires risk aversions of γ = 2.1 and γ = 7.6, respectively. Results are
depicted in Figure 12 and show that for the most conservative target (20% of stocks), all
corrections types align and are less favorable for equities.

7 Conclusion

We propose to model long-term estimates of risk based on expert climate forecasts. Im-
portantly, the links between variables are synchronous and not predictive. The rationale
for this is that realized risk is a consequence of realized (current) economic conditions -
which we augment with environmental considerations.
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Figure 11: Alternative priors for expected returns. We plot the distribution of the equity
share when shifting from the baseline scenario to a climate adjusted one. The calibration is such
that the baseline equity weight is 60%. Each color is associated with a different couple of priors
for expected returns.
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Figure 12: Adjustments with expected returns - conservative allocations. In the left plot,
we display the distribution of shrunk expected returns The shrinkage intensities are between 0.0
and 0.8 (21 values in total). In the right plot, we feature the shift in allocation when plugging
NiGEM expected returns (µ) in (12). The parameters η = 0.028 and γ = {2.1, 7.6} are calibrated so
as to obtain the 40/60 and 20/80 mixes for the baseline climate scenario.

Our results show that allocations that are driven by risk considerations only are not
too impacted by potential climate losses. An initial target of 60% of equities is likely to
shift within a range of 57%-63%. This is because the models predict that both asset classes
will be harmed by climate impacts in a similar fashion. Thus, the relative risk of one class
versus the other is only mildly altered.
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However, this is not true for expected returns. The latter are reduced more for bonds
than for equities, hence mean-variance portfolios that rely on climate-based estimates of
returns are mostly favorable to equities. Our results are robust to several changes in the
protocol, including quadratic temperature anomaly and post-hoc changes in distributions
of risks and returns.

Unfortunately, while the optimal allocations are not necessarily very sensitive to cli-
mate risks, portfolio performance is. Risk-adjusted returns are significantly impacted,
notably because climate-based returns are overwhelmingly smaller than their climate-
agnostic counterparts. Our results indicate that risk-adjusted returns can be between 20%
and 50% lower when accounting for climate-driven losses.

Naturally, our findings depend on the choice of a particular model for volatilities and
correlations, and we have deployed a parsimonious approach for simplicity. Modern
climate models generate many other economic outputs that could be useful as well, such
as commodity prices, consumption, or unemployment rate. Depending on beliefs as to
which variables drive risk, larger and potentially more complex models (e.g., non-linear)
could be envisioned. This is left for future research.
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A Additional material

A.1 Temperature anomaly
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Figure 13: Temperature anomaly in the US. We plot the time-series of the simple average of
the temperature anomaly of the 48 states in mainland US. The smoothed blue curve is the rolling
moving average over 10 years.

A.2 Long-term returns and volatilities
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Figure 14: Financial time-series. We plot the long term average returns, volatilities and cor-
relation for US equities and sovereign bonds. The first two are averaged over 10 years while the
correlation is simply computed over a 10 year sample. Each point is a realized value and hence
corresponds to the sample of the prior 10 years.
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A.3 Macroeconomic indicators
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Figure 15: Macro variables. We plot the time-series of the two aggregate indicators we use to
proxy the economic environment: long-term inflation and GDP growth rates (geometric averages).
They are downloaded from the Federal Reserve of Saint Louis data portal (GDP and CPIAUCSL
identifiers).

A.4 Climate adjustments for equity returns
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Figure 16: Climate adjustments for equity returns. We plot the time-series of correction
for equity returns implied by climate models, scenarios and severities compared to the baseline
situation (in %). The values are in percentages of adjustment to the baseline growth value. For the
period 2023-2033, it is equal to +3.29%.
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A.5 Volatility prediction with long-term returns
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Figure 17: Long-term volatility prediction - with long-term returns. We plot the distri-
bution of long-term forecasts for volatility across the two asset classes - from Model B panel 1
in Table 1 The upper panels compare historical values with the predicted ones while the lower
ones focus on the latter but show the shift that occurs when considering various levels of climate
severity. The priors used when post-shrinking in (6) are the historical means (1960-2023): 0.145 for
equity volatility and 0.071 for bond volatility and the intensities αi are between 0.0 and 0.8 with
0.01 increments. The vertical lines in the upper panels mark the average predictions in the baseline
scenarios (no adjustment).
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