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Abstract

This paper analyses the question of the feasibility and desirability for a liability-driven investor to
hold an equity portfolio engineered to exhibit enhanced liability-hedging properties versus holding
a broad equity index. We first show within a continuous-time dynamic portfolio selection model
that investor welfare is not only increasing in the Sharpe ratio of the performance portfolio and
in the correlation of the liability-hedging portfolio with the liabilities, as suggested by the fund
separation theorem, but it is also increasing in the correlation between the performance portfolio
and the liabilities. The practical implication of this fund interaction theorem is that liability-
driven investors will in general benefit from improving hedging characteristics of their performance
portfolio, unless this improvement is associated with an exceedingly large opportunity cost in
terms of performance. In a second part of the paper, we report empirical evidence of the presence
of strong cross-sectional dispersion in liability-hedging characteristics of individual stocks within
the S&P500 universe. We also demonstrate that liability-driven investors may derive substantial
welfare benefits from the joint selection of low volatility and high dividend yield stocks, a procedure
that is found to lead to economically and statistically significant improvements in liability hedging
benefits compared to the use of a broad equity market index. These benefits are further enhanced
when the selected stocks are combined with variance minimizing weights, a weighting mechanism
that contributes to a marginal improvement in hedging benefits and a substantial increase in risk-
adjusted performance. Our findings are robust with respect to changes in the sample period, in
the number of stocks used in the selection procedure, in the duration of the liabilities, and in the
presence of inflation-indexation in the liability streams.
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1 Introduction

The fund separation theorem, which is a fundamental cornerstone of dynamic asset pricing theory, sug-
gests that risk and performance are two conflicting objectives that are best managed when managed
separately within two dedicated building blocks. In an asset-only context, it implies that all investors
should allocate some fraction of their wealth to the risk-free asset and the remainder to the optimal
(that is maximum Sharpe ratio) risky portfolio (Tobin (1958)). In an asset-liability management
(ALM) context (e.g. a pension plan facing liability commitments), the fund separation theorem trans-
lates into liability-driven investing (LDI in short), a disciplined investment framework that advocates
splitting an investor’s wealth between a dedicated liability-hedging portfolio (LHP) and a common
performance-seeking portfolio (PSP) (see Martellini (2006) or Martellini and Milhau (2012)).1 While
the LDI paradigm implies that investor welfare should depend on how successful each building block
is at delivering what it has been designed for, namely performance benefits for the PSP and hedging
benefits for the LHP, the intuition suggests that the interaction between performance and hedging
motives should also play an important role. For example, it is expected that an investor who is given a
choice between two PSPs with approximately identical risk-adjusted performance characteristics but
extremely different liability-hedging properties should opt for the one with more attractive liability
hedging benefits.

A formal analysis of this effect within the context of a continuous-time dynamic asset allocation
model is provided in the theoretical section of the present paper (Section 2), where we investigate
whether investor welfare can be improved by the design of PSPs with improved liability-hedging
properties. This question may at first glance seem inconsistent with the key insight gained from the
fund separation theorem, which advocates a separate, as opposed to a joint, focus on performance
and hedging in the design of the optimal investment strategy. By introducing a formal decomposition
of liability-driven investors’ welfare, we are however able to show that it is not only increasing in
the Sharpe ratio of the PSP and in the correlation of the LHP with the liabilities, as suggested by
the fund separation theorem, but it is also increasing in the correlation between the PSP and the
liabilities (see Proposition 2.2). One key practical implication of this fund interaction theorem is that
investors such as pension funds will in general benefit from improving hedging characteristics of their
PSP, unless this improvement is associated with an exceedingly large opportunity cost in terms of
risk-adjusted performance. Ultimately, the net impact will be positive or negative depending on the
relative strength of the following two competing effects. On the one hand, the equity benchmark with
improved hedging benefits can represent a higher fraction of the investor’s portfolio for a given ALM
risk budget; on the other hand, the equity benchmark with improved hedging properties may have a
lower risk-adjusted performance. Hence the trade-off is between an increase in performance due to a
higher allocation to risky assets, and a decrease in risk-adjusted performance due to a lower reward

1In an ALM context, cash is also used as an additional building block, which allows, for example, the use of leveraged
LDI strategies.
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for each dollar invested.
It is useful at this stage to emphasise that the fund interaction theorem and the fund separation

theorem are not mutually inconsistent; in fact they co-exist within the framework of liability-driven
investing, which the aforementioned results do not contradict, even though they do advocate a focus
on the interaction between performance and hedging motives. In particular, one should indeed ac-
knowledge that it follows from the uniqueness of the maximum Sharpe ratio (MSR) portfolio given a
set of parameter values, that investor long-term welfare is (by definition of the LDI strategy being the
optimal strategy in the presence of liability constraints) the highest when the Sharpe ratio of the PSP
is maximised (without taking into account the interaction with the liabilities) and when the (squared)
correlation of the LHP with the liabilities is maximised (without taking into account its risk-adjusted
performance). In this context, it may seem unclear how an improvement in investor welfare can be
generated by the use of a PSP with improved hedging properties, if this improvement should come at
the cost of a lower Sharpe ratio. In practice, however, uncertainty about parameter values, and in par-
ticular expected returns (see Merton (1980)), implies that one cannot form ex-ante a perfect MSR PSP
from individual securities or asset classes. As a result, investors are at best left with reasonably good
proxies for efficient PSPs, with hopefully decent risk-adjusted performance benefits. Hence, while the
true MSR PSP generates the highest level of welfare for all investors (fund separation theorem), the
relative merits of various competing heuristic proxies for performance portfolios need to be empirically
assessed as a function not only of their performance properties but also of their hedging properties, by
virtue of the fund interaction theorem. Another key limitation in terms of real-world implementation
is the presence of leverage constraints, which implies that most underfunded pension funds cannot use
as much leverage as would be required to fully hedge their liabilities. In practice, pension funds end
up investing all their assets in a zero- or low-leverage portfolio mostly containing stocks and bonds,
with a key trade-off between a dominant allocation to equities (say a 60/40 stock/bond split), which
generates attractive levels of expected returns, but also implies high levels of funding ratio volatility,
or a more moderate equity allocation (say a 40/60 stock/bond split) which requires lower ALM risk
budgets but correspondingly also generates lower upside potential. In this context, the question arises
whether it would it make sense for a pension fund to hold a customised equity portfolio engineered
to exhibit enhanced liability-hedging properties versus holding an off-the-shelf broad equity index.
Intuition indeed suggests that a better alignment of the PSP with respect to the liabilities would lead
to an increased allocation to stocks for the same level of volatility of the funding ratio, which in turn
would generate higher access to the equity risk premium.

In addition to the presence of parameter uncertainty and leverage constraints also remain a num-
ber of additional degrees of freedom, which explain that the question of the joint assessment of the
performance and hedging benefits of a proxy for the PSP is of practical relevance. The first of these
degrees of freedom is related to the menu of asset classes allowed to enter the composition of the PSP
and LHP portfolios. In fact, by enlarging the investment universe, investors may be able to simul-
taneously improve the performance and hedging benefits of the PSP, which would result in a higher
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welfare compared to a situation with a more limited menu of available asset classes. For example, the
introduction in the asset mix of inflation-linked bonds may lead not only to improvements to the LHPs
for investors facing inflation-linked liabilities. It may also lead to improvements to the PSP since the
introduction of these bonds will, in general, result in an increase in risk-adjusted performance (due
to low correlations of inflation-linked bonds with other asset classes such as equities) as well as an
increase in liability-friendliness (see Section 3 for a formal definition of this concept). Another impor-
tant degree of freedom is the choice of the benchmark used to represent the performance of a given
asset class. In this context, the question arises of the benefits/costs associated with switching to one
benchmark to another benchmark with lower or higher liability-hedging and performance-seeking ben-
efits. In particular, while the traditional choice is to use a cap-weighted (CW) index as a benchmark
for equities, there is substantial empirical evidence that non cap-weighted benchmarks, sometimes also
known as smart beta benchmarks, may enjoy a higher level of diversification, and as such tend to have
higher Sharpe ratios and expected returns compared to corresponding CW benchmarks (see for exam-
ple Amenc et al. (2012)). Some of these benchmarks may also have improved liability-hedging benefits
(see for example a formal analysis of the interest rate hedging properties of global minimum variance
benchmarks by Fishwick (2013)), so that a move away from the use of CW benchmarks may result
in an improvement on both performance and hedging dimensions, with no contradiction with respect
to the fund separation theorem. One of the goals of the empirical section of this paper (Section 4)
is precisely to provide a quantitative measure of welfare improvements expected from switching from
a standard off-the-shelf CW equity benchmark to a dedicated equity benchmark designed to exhibit
above-average liability-hedging properties. There is finally another key feature to take into account in
practice, which is the presence of a number of regulatory or implementation constraints. For instance,
investors may be constrained to only hold fixed-income instruments in the LHP, for example because
of a regulatory or other concern over short-term risk relative to liabilities driven by a mismatch in
interest rate risk exposure. This constraint a priori implies a loss of long-term efficiency compared
to an otherwise unconstrained optimal long-term LHP, which may include for example risky assets
with attractive inflation-hedging exposure for inflation-linked liabilities. In this context, investors may
benefit from having a PSP which holds more of these risky assets with attractive long-term (infla-
tion) hedging benefits compared to what would be otherwise needed if they were only maximising the
Sharpe ratio.

Overall, we argue that the fund interaction theorem is not inconsistent with the fund separa-
tion theorem, which it complements by emphasising the benefits of having, if and when possible, an
alignment, as opposed to a conflict, between the performance and hedging motives. In the empirical
section of this paper (Section 4), we analyse the practical implications of this fund interaction theorem
in terms of the design of liability-friendly equity benchmarks (i.e. equity benchmarks with improved
liability-hedging benefits). In this context, we show that very substantial increases in investor welfare
would come from switching from a standard off-the-shelf CW equity benchmark to an equity bench-
mark designed to exhibit above-average liability hedging properties. We focus on equities since this
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asset class is arguably the dominant asset class within the PSP for most institutional investors. We
cast the analysis at the individual stock level, as opposed to sticking to the sector level, given the
presence of a very substantial levels of cross-sectional dispersion in interest rate and inflation hedging
benefits across individual stocks (see literature review in Section 3). More precisely, we consider two
alternative approaches to the definition of liability-friendliness. Our first approach is of a statistical
nature and relies on the capacity of a stock to track a given liability proxy, which we model as a
constant maturity nominal or inflation-linked bond index. In this setting with a focus on risk factor
matching, a stock will be said to be liability-friendly if the tracking error of the stock returns with
respect to the returns on the liability proxy is low. Given the decomposition of the tracking error in
two components, one that is related to the portfolio volatility and one that is related to the portfolio
correlation with the liability proxy, a low tracking error can be achieved either if the volatility of the
stock is low and/or if the correlation between the stock and the liability proxy is high. Therefore,
liability-friendly stocks are expected to fulfil either one or two of these requirements. The second
approach which we propose for the characterisation of liability-friendly stocks hinges on their ability
to replicate fixed pension liability cash-flows. This cash-flow matching focus can be best achieved by
stocks and portfolios of stocks that enjoy a high and stable dividend yield.

In an empirical analysis, we use these insights to address a number of practically important ques-
tions related to the impact on investor welfare of potential improvements of liability-hedging properties
of equity portfolios held by pension funds. Our key quantitative findings can be summarised as follows.
In the cross-section, the main driver of liability-friendliness in a statistical factor-matching sense is
volatility. Over our 1975-2012 sample period for the S&P 500 universe, the equally-weighted (EW)
portfolio of the 20% of stocks with the lowest volatilities has a tracking error of 14.6% with respect to
our liability proxy while the EW portfolio of the 20% of stocks with the highest volatilities is almost
twice as large at 27.8%. This spectacular improvement in tracking error does not only emanate from a
lower portfolio volatility; it is also linked so a strong increase in correlation with the liabilities. Hence,
the selection of low volatility stocks generates a positive 7.7% correlation with the liability proxy, while
a selection of high volatility stocks would generate a negative correlation or -6.7%. Intuitively, this
improvement can be traced down to the fact that low volatility stocks, which tend to be low dividend
uncertainty stocks, are the stocks that tend to be the closest approximations to fixed-income securities,
and as a result, the best approximation to bond-like liabilities. These results are robust with respect to
changes in the number of selected stocks, changes in the sample period, changes in the duration of the
liability proxy, or the introduction of inflation-indexation. Addressing the focus on liability-hedging
through a double-sort procedure, starting with the 200 highest dividend yield stocks, selecting the 100
lowest volatility stocks amongst them, and subsequently performing a minimum variance optimisation,
leads to further improvements in the liability-friendliness of the selected portfolios.

As a result of the resulting improvement in liability-hedging benefits, a liability-driven investor
allocating for example 40% to equities on the basis of a CW equity benchmark can allocate as much
as 53.3% to a minimum variance portfolio of selected stocks from the aforementioned double-sort
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procedure for the same volatility of the funding ratio, and for a maximum drawdown relative to the
liabilities going down from 33.4% to 25.7%. The resulting increase in equity allocation for the same
ALM risk budget, combined with an improved risk-adjusted performance of the dedicated equity
benchmark with respect to the S&P 500 index, leads to an improvement in performance reaching
close to 160 basis points annualised over the 1975-2012 sample period. For inflation-linked liabilities,
we find (over a shorter period starting in 1999) that the use of an equity benchmark with improved
liability-hedging benefits generates an annualised excess return of 270 basis points for the same funding
ratio volatility compared to the use of a standard CW S&P 500 benchmark.

The rest of the paper is organised as follows. Section 2 introduces a formal framework suited for
an empirical investigation of whether investor welfare can be enhanced by the design of performance
portfolios with improved liability-hedging properties. In Section 3, we introduce a number of formal
measures of liability-friendliness. In Section 4, we report empirical evidence of high levels of cross-
sectional dispersion in these measures, discuss the implications in terms of the selection of stocks
exhibiting above average liability-friendliness, and also analyse the impact on investor welfare of
the use of an equity benchmark with improved liability-hedging benefits. Section 5 presents some
conclusions and suggestions for further research.

2 Fund Separation Theorem versus Fund Interaction Theorem

In this section, we describe a formal continuous-time model in which investor welfare is measured by
expected utility and can be computed analytically. We introduce two measures of welfare gain, which
can be used to assess the benefits of increasing the correlation between the performance portfolio and
liabilities within a liability-driven investing strategy.

2.1 The Investment Model

Uncertainty in the economy is represented by a filtered probability space (X,F ,P ), where F is a
sigma-algebra on X, and P is a probability measure that represents investor’s beliefs. The finite time
span is denoted with [0, T ], where T can be thought of the investment horizon. The probability space
supports a d-dimensional Brownian motion z, d being the number of independent sources of risk in
the economy. The filtration generated by this Brownian motion is denoted with (Ft)0≤t≤T : the sigma-
algebra Ft represents the information available to the investor on date t. The nominal short-term
interest rate on date t (with infinitesimal borrowing or lending horizon) is denoted with rt.

The investment universe consists ofN "locally risky" assets, whose prices are denoted with S1t, . . . , SNt.

They follow the dynamics:
dSit
Sit

= [rt + σitλit]dt+ σ
′
itdzt,

where λit is the Sharpe ratio, σit is the d×1 volatility vector, and σit is the scalar volatility.2 There also
2We use underbars to denote vectors and matrices.
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exists a "locally risk-free" asset whose price is the value of the continuously compounded short-term
rate:

S0t = exp
[∫ t

0
rsds

]
.

For tractability purposes, we make the following assumptions:

- The short-term interest rate follows the Vasicek model (Vasicek (1977)) :

drt = a(b− rt)dt+ σ
′
rdzt;

- The Sharpe ratios and the correlations of assets with each other and with the short-term interest
rate are constant.

We let λr denote the (constant) price of interest rate risk. For further use, we also introduce the
volatility matrix of the risky assets:

σt = (σ1t . . . σNt).

It is useful to factor out the scalar volatilities (which are possibly stochastic). To this end, consider
the correlation matrix of the risky assets, Ω, and its Cholesky decomposition, Ω = UU ′. U is thus the
matrix of the normalised volatility vectors, ρ

i
= 1

σit
σit, which are constant by assumption. Letting V t

be the diagonal matrix of scalar volatilities, we thus have that:

σt = UV t.

The instantaneous covariance matrix is thus Σt = σt
′σt, and the vector of expected excess returns

on the risky assets can be written as µ
t

= V tΛ, where Λ is the vector that contains all Sharpe ratios.
Following He and Pearson (1991), a price of risk vector is defined as any vector process (λt)0≤t≤T that
satisfies, for all t:

σ
′
tλt = µ

t
.

Of particular interest is the "spanned price of risk vector", which is the only price of risk vector that
falls in the span of the volatility matrix. It is defined as:

λ = σt(σ′tσt)−1µ
t

= UΩ−1Λ.

The second expression shows that this vector is actually constant: uncertainty in volatilities is cancelled
out from the product, and the spanned price of risk vector is a function of correlations and Sharpe
ratios, which are constant. It is important to note that it is not the only price of risk vector, unless
the market is dynamically complete: this condition is equivalent to having d = N (see He and Pearson
(1991) and Duffie (2001)), but if d > N , that is, if the number of sources of risk in the economy
exceeds the number of traded risky assets, then the market is incomplete.
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A portfolio strategy is described by a weight vector process (wt)0≤t≤T , where wt is the N×1 vector
of weights allocated to the risky assets at date t. The sum of the elements of this vector is not
necessarily equal to 1, in which case cash can be used to make up the balance: if the sum of weights
invested in risky assets is less than 1, one takes a long position in cash; otherwise one takes a short
position (borrowing). Let us denote the wealth process with (At)0≤t≤T , A0 being the capital invested
at time 0. Using the previously introduced notations, the intertemporal budget constraint can be
written as:

dAt
At

= [rt + w′tσ
′
tλ]dt+ w

′
tσ
′
tdzt.

Investor’s preferences for high return and low variance can be captured within the expected utility
framework. We take the utility function to be the Constant Relative Risk Aversion (CRRA) one,
which is a popular choice in the asset allocation literature:

U(x) = x1−γ

1− γ ,

where γ is the risk aversion coefficient, which is assumed to be greater than or equal to 1. The case
of a unit γ corresponds to the logarithmic utility function: the investor is then only concerned with
the expected return of its portfolio, not with the variance.

In order to model the situation of a defined-benefit pension fund, we assume that the investor has
liabilities, whose value is represented by the value of a constant maturity nominal bond: this process
is thus the value of a continuous roll-over of nominal bonds, which all have the same maturity τ . In
the Vasicek model, the dynamics of the constant-maturity bond reads:

dLt
Lt

= [rt + σLλL]dt+ σ
′
Ldzt,

where the Sharpe ratio is λL = −λr, and σL is the volatility vector of liabilities, given by:

σL = −1− e−aτ

a
σr = −D(τ)σr.

This expression for the volatility vector shows that the correlation between the liability process
and any risky asset is the negative of the correlation between the interest rate and the risky asset:
this correlation is thus constant. In what follows, we let RL denote the N × 1 vector of correlations
between the risky assets and the liability process.

2.2 Optimal Portfolio Rule

Because the investor is concerned with the performance of the portfolio relative to its liabilities (not
the absolute performance), utility is not derived from wealth itself, but from the funding ratio. Thus,
the investor’s objective is to find the portfolio strategy that gives the highest expected utility from
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terminal funding ratio:
w∗ = argmax

w
E

[
U

(
AT
LT

)]
.

The optimal policy is given by the following proposition, the proof of which can be found in Martellini
and Milhau (2012).

Proposition 2.1. (Optimal Strategy). The utility-maximising strategy is:

wt = λMV P

γσMV P,t
wPSP,t + (1− 1

γ
)βL/LHP,twLHP,t,

where

- wMV P,t is the mean-variance efficient performance-seeking portfolio (PSP), that maximises the
instantaneous Sharpe ratio:

wPSP,t = 1
1′Σ−1

t µ
t

Σ−1
t µ

t
,

- λPSP and σPSP,t are the Sharpe ratio and the volatility of the PSP:

λPSP =
√

Λ′Ω−1Λ,

σPSP,t = λMV P

1′Σ−1
t µ

t

,

- wLHP,t is the liability-hedging portfolio (LHP), that maximises the instantaneous correlation with
liabilities:

wLHP,t = 1
1′Σ−1

t σt
′σL

Σ−1
t σt

′σL,

- βL/LHP,t is the beta of liabilities with respect to the LHP:

βL/LHP,t = 1′Σ−1
t σt

′σL.

The optimal strategy is of the liability-driven investing type, since it is a linear combination of
a PSP, which is optimally taken to be the MSR portfolio, and a portfolio whose objective is to
replicate liability value as closely as possible (the LHP). The properties of the optimal policy have
been extensively discussed in the literature (see e.g. Detemple and Rindisbacher (2010)). For instance,
the allocation to the mean-variance efficient PSP is increasing in the Sharpe ratio of this portfolio, and
the allocation to the LHP is increasing in the beta coefficient, hence in the correlation between the
LHP and liabilities. In other words, the allocation to each of the two building blocks is an increasing
function of the criterion that this block is designed to maximise.
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2.3 Fund Interaction Theorem

The indirect utility is defined as the maximum expected utility that can be achieved given the available
capital (A0) and current market conditions (here, summarised by the risk-free interest rate r0).3

However, as the level of utility in itself is hard to interpret, we introduce a closely related concept,
which is the Logarithmic Utility Gain (in short, LUG). This quantity is defined as the logarithm of
the factor by which the initial capital must be multiplied for an investment in the risk-free asset to
produce the same expected utility as the optimal strategy: in other words, the investor is indifferent
between investing A0 in cash and the risky assets, following the optimal rule, and investing A0× eLUG

in cash. From this definition, it is easy to see that the "annualised LUG", defined as LUG
T , has the

interpretation of an excess return that must be added to the risk-free rate for an investment in cash
to lead to the same expected utility as the optimal strategy. Note that the LUG is independent from
the current funding ratio, a property that follows from the choice of the CRRA utility function.

By construction, the LUG is always positive, unless an investment in cash only turns out to be
the optimal policy, in which case it is zero. The LUG is given by the following proposition, which we
interpret as a fund interaction theorem. The proof of the proposition can be found in Appendix A.

Proposition 2.2. (Fund interaction theorem 1). The LUG associated with the optimal strategy
is:

LUG∗ = 1
2γλ

2
PSPT + (1− γ)2

2γ σ2
Lρ

2
LHP,LT + (1− 1

γ
)σLλPSPρPSP,LT,

where:

- ρMV P,L is the correlation between the PSP and liabilities:

ρPSP,L = Λ′Ω−1RL√
Λ′Ω−1Λ,

,

- ρLHP,L is the correlation between the LHP and liabilities:

ρLHP,L =
√
R′LΩ−1RL.

This proposition establishes a decomposition of investor welfare across the two risky funds of
the fund separation theorem. The first term is a pure contribution from the mean-variance efficient
portfolio, which is proportional to the squared Sharpe ratio of this fund, regardless of its hedging
properties. The second term is a pure contribution from the LHP; it is proportional to the squared

3Nielsen and Vassalou (2006) show that the opportunity set (a synonym for market conditions) is characterised by the
state variables that impact the intercept and the slope of the intertemporal capital market line (ICML): the intercept is
the risk-free rate, and the slope is the Sharpe ratio of the PSP. Because the Sharpe ratios and the pairwise correlations
of assets are constant, the slope is constant, and the only source of uncertainty that affects the position of the ICML is
the current risk-free rate.
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correlation between the portfolio and the liabilities that it intends to hedge. The last term involves
the correlation of the PSP with the liabilities, and is thus related to how attractive (or unattractive)
the hedging properties of the PSP may be. The interpretation of this cross-term is straightforward:
investor welfare is enhanced in case the PSP has attractive hedging properties. Everything else
equal, the LUG is increasing in the product λPSPρPSP,L. As long as the Sharpe ratio of the PSP is
positive, this implies that investor welfare is increasing in the correlation between this portfolio and
the liabilities. In sum, the cross-term describes the interactions between the various funds/motives,
and how these interactions contribute to investor welfare.

In fact, Proposition 2.3 below shows that the interaction term can be equally interpreted as being
related to the hedging benefits of the performance portfolio or to the performance benefits of the LHP.
The proof is straightforward given the identity

λLHP = Λ′Ω−1RL√
R′LΩ−1RL

.

Proposition 2.3. (Fund interaction theorem 2). With the same notation as above, the following
relation holds:

λPSPρPSP,L = λLHPρLHP,L = Λ′Ω−1RL.

In other words, while each building block is by construction the best at what it has been specifically
designed for: (risk-adjusted) performance (maximising Sharpe ratio) or liability-hedging, the two
portfolios are strictly equivalent in terms of the product of their relevant characteristics; the relative
domination of the performance portfolio in terms of the Sharpe ratio is exactly compensated by the
relative domination of the LHP in terms of the correlation with liabilities.

2.4 A Formal Welfare Gain Measure

As explained in the introduction, uncertainty about parameter values (and in particular expected
returns) implies that one can never hold the true MSR portfolio. For example, it is standard practice
for investors to use a CW index as an equity benchmark for the equity allocation within the PSP. While
the true MSR PSP generates the highest level of welfare for all investors (fund separation theorem),
various competing heuristic proxies for performance portfolios need to be empirically assessed as a
function of their performance but also hedging properties (fund interaction theorem). In particular,
one might be interested in analysing whether investor welfare will be increased or decreased if moving
away from a CW equity benchmark to a dedicated equity benchmark constructed to have superior
liability-hedging benefits.

Formally, LUG as a quantitative measure of investor welfare can be used to compare two different
investment universes. To fix the ideas, and to introduce a framework consistent with the empirical
part of this paper, let us consider two investment universes, referred to as 0 and 1.
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- Universe 0 consists of cash, a standard CW equity index (e.g. the S&P 500), plus a bond index
that is assumed to perfectly replicate liabilities (i.e. has a correlation of 1 with liabilities). The
LHP is thus fully invested in this bond index. For notational clarity, we denote by PSP0 the
PSP constructed from the equity and bond indices and by LUG∗0 the LUG associated with the
optimal strategy in this universe.

- Universe 1 consists of cash, an alternative equity benchmark, constructed from a sub-universe of
the S&P 500 universe, with a possibly different weighting scheme (see Section 3 for more details
about the stock selection procedure and Section 4 for more details on the alternative weighting
schemes), and again the perfect liability-matching bond portfolio. We denote the corresponding
PSP by PSP1 and the LUG by LUG∗1.

If the difference ∆LUG∗ = LUG∗1 − LUG∗0 is positive, then Universe 1 is " better" than Universe
0 in the sense that the maximum expected utility achieved in this universe is higher. A negative
difference means that the selection operation has led to a lower indirect utility, hence that Universe 0
is preferable. The size of the difference can be interpreted in terms of variation of initial contribution:
by definition of the LUG, the investor is indifferent between investing A0 optimally in Universe 1, and
investing A0 × e∆LUG∗ optimally in Universe 0.

In fact, it can be shown that if the following (heroic) conditions are simultaneously satisfied, then
the difference in welfare related to different equity benchmarks will only depend (positively) on the
Sharpe ratio of the competing equity benchmark, or more precisely, on the Sharpe ratio that will be
achieved for the PSP constructed with these equity benchmarks, and not on the correlation of these
benchmarks with the liabilities:

A1: A perfect liability hedging portfolio exists; in other words, the maximum correlation with the
liabilities achieved with the given menu of asset classes is strictly less than 1.

A2: The investor holds the true MSR portfolio based on the available assets as a PSP.
A3: The investor holds the optimal combination of the true MSR portfolio and the perfect LHP.
The proof of this result follows as a corollary of Proposition 2.3, which states that the product of

the Sharpe ratio and correlation with liabilities is the same for the PSP and the LHP, a result which
holds only for optimally designed building blocks, that is, for the MSR portfolio and the maximum
correlation portfolio. In both universes, the LHP is fully invested in the bond index, so that the
product λLHPρLHP,L is constant. As a consequence, the product λPSPρPSP,L is the same for both
universes, which leads to:

∆LUG∗ = 1
2γ (λ2

PSP1 − λ
2
PSP0)T,

Thus, ∆LUG∗ is only a function of the Sharpe ratios of the PSPs, and does not depend on their
respective correlations with liabilities, as it should be in accordance with the fund separation theorem.

Conversely, if any one of these conditions is violated, then changes in investor welfare when shifting
from the standard S&P 500 equity benchmark to an alternative equity benchmark, the change in
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investor welfare correlation will not only depend upon the Sharpe ratios of the standard and alternative
equity benchmarks, but also on their correlation with the liabilities. Amongst the many reasons why
the assumptions above are expected to be violated in practice, the following stand out. First, regarding
assumption A1, investors can have access to a perfect LHP only if no unhedgeable sources of risk exist.
In practice, the presence of longevity risk or inflation risk for inflation-linked liabilities, together with
capacity constraints in longevity derivatives or inflation-linked instruments capacity constraints imply
that LHPs will only allow for an imperfect match of liability risk. Even when interest rate risk is
the only factor impacting changes in pension liabilities, it happens that existing instruments (nominal
bonds, futures contracts or swap contracts) do not allow for a perfect liability hedge because they
often have a duration lower than that of the liabilities. Turning to assumption A2, the presence of
parameter uncertainty, particularly severe for expected return parameters (Merton (1980)) implies
that it is impossible in practice to hold the perfect MSR portfolios, and heuristic proxies are used
instead for that portfolio. Finally, assumption A3 is most often violated in practice, not only for
the presence of parameter uncertainty which again makes it impossible for investors to measure the
volatility and Sharpe ratio of their PSP, but also the presence of leverage constraints very often prevent
investors from holding a theoretically derived optimal allocation to the PSP and LHP, which typically
involves for reasonable parameter values an excessive amount of leverage.

In this context, the relevant question in general becomes the following in practice: For a liability-
driven investor who expects to allocate a given fraction x% of the assets to equities, should there be
welfare gains to be expected from moving away from a standard CW benchmark to an alternative
equity benchmark? Answering this question depends not only on the differences in risk-adjusted
performance, but also on differences in correlation with the liabilities between the two benchmarks.

More precisely, in anticipation of the empirical exercises from Section 4, we seek to compare the
improvement (or deterioration) in investor welfare that follows from the switch to a different equity
benchmark in the context of heuristic fixed-mix strategies. To this end, let us consider a liability-
driven investing (LDI) strategy invested in an equity benchmark S, and a bond benchmark B, with
respective weights x and 1 − x (x is a parameter lying between 0 and 1, thus excluding the use of
cash). We maintain the assumption that the bond benchmark can be taken as a perfect match for the
liability portfolio. In this simple setting with only two asset classes, one of which is a perfect proxy
for the liabilities, the family of LDI strategies can be obtained by all possible combinations of the two
building blocks, with respective weights x and 1− x (x is a parameter lying between 0 and 1 since we
rule out leverage and short-selling in this exercise):

w = xwS + (1− x)wB.

In order to compute the expected utility associated with this strategy, we need to make the
additional assumption that the volatilities of the two risky assets, S and B, are constant.4

4The reason for making this assumption is that we need the volatility vector of the wealth process, σtw, to be a
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As for the optimal strategy, it is possible to define the LUG as the logarithm of the factor by which
the initial wealth must be multiplied for the investor to be indifferent between investing A0 in the LDI
strategy and A0 × eLUG in cash only. The following proposition provides a closed-form expression for
the LUG, which is no longer necessarily positive. The proof of the proposition is located in Appendix
B.

Proposition 2.4. (LUG of Fixed-Mix Strategy). Let AT be the terminal wealth generated by
investing A0 in the fixed-mix LDI strategy and AcT be that generated by investing A0 in cash. The
LUG associated with the fixed-mix LDI strategy is:

LUGfm = E

[
ln AT
LT

]
+ 1− γ

2 V

[
ln AT
LT

]
−
{
E

[
ln A

c
T

LT

]
+ 1− γ

2 V

[
ln A

c
T

LT

]}
,

where:

- The variances of the log funding ratios are:

V

[
ln AT
LT

]
= [x2σ2

S +(1−x)2σ2
B +2x(1−x)σSσBρS,B−2xσSσLρB,L−2(1−x)σBσLρB,L+σ2

L]T ;

V

[
ln A

c
T

LT

]
= σ2

LT ;

- The expected log funding ratios are:

E

[
ln AT
LT

]
= ln A0

L0
+
[
xµS + (1− x)µB − σLλL + σ2

L

2

]
T

− 1
2
[
x2σ2

S + (1− x)2σ2
B + 2x(1− x)σSσBρS,B

]
T ;

E

[
ln A

c
T

LT

]
= ln A0

L0
+
[
−σLλL + σ2

L

2

]
T.

In these equations, the symbols µ denote (instantaneous) expected excess returns, the λ are Sharpe
ratios, the ρ are correlations and the σ are volatilities.

It is straightforward to see that the LUG neither depends on the initial funding ratio, nor on the
Sharpe ratio of the liability process, since these two parameters vanish from the expression.

deterministic function of time. This condition is satisfied by the optimal strategy of Proposition 2.1, since stochastic
volatilities in the volatility matrix and the weight vector are cancelled out from the product. But the fixed-mix LDI
strategy has constant weights, so that the vector σtw does depend on asset volatilities. In order to avoid having a
stochastic volatility vector, we require constant asset volatilities.
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Proposition 2.4 shows that the LUG of the fixed-mix strategy can be interpreted as the difference
of two quadratic utilities, achieved respectively with the LDI strategy and the risk-free asset. Since
the risk aversion γ is greater than 1, the coefficient of the variance is negative; as a result, the LUG
is increasing in the correlations of both building blocks with liabilities. Hence, everything else equal,
an investor will prefer the equity benchmark that has the largest correlation with liabilities.

As with the LUG associated with the optimal strategy, the LUG computed with the fixed-mix
strategy can be used to compare two investment universes. Let us again consider the two investment
universes we previously introduced, and define two LDI strategies as follows:

- For Strategy 0, the equity benchmark, S0, is a broad CW market index, and the bond benchmark
is the LHP, which has a correlation of 1 with liabilities and the same volatility as liabilities. We
let x0 denote the allocation to the benchmark S0;

- For Strategy 1, the equity benchmark, S1, is an portfolio constructed from a subset of the
universe of the broad index in an attempt to enhance its liability-hedging properties. The bond
benchmark is still assumed to be the perfect LHP, and the allocation to the benchmark S1 is x1.

As for the optimal strategy, the quantity of interest is the change in the LUG, ∆LUGfm =
LUGfm1 − LUGfm0 . It is such that the investor is indifferent between investing A0 in Strategy 1 and
A0× e∆LUGfm in Strategy 0. By letting A0

T and A1
T be the terminal wealths obtained by investing A0

in each of the two fixed-mix strategies, we obtain, from Proposition 2.4:

∆LUGfm = E

[
ln A

1
T

A0

]
− E

[
ln A

0
T

A0

]
+ 1− γ

2

{
V

[
ln A

1
T

LT

]
− V

[
ln A

0
T

LT

]}
.

At this stage, the change in LUG not only depends on the risk and return parameters of the building
blocks, but also on the unobservable risk aversion parameter, and the allocations to the respective
equity benchmarks. To remove the dependency in the risk-aversion parameter, let us now assume that
the allocation x1 is chosen in such a way that the two funding ratios have the same variance. Then,
the change in LUG reduces to the excess return of Strategy 1 over Strategy 0:

∆LUGfm = E

[
ln A

1
T

A0

]
− E

[
ln A

0
T

A0

]
.

The computation of the variance-matching allocation x1 requires solving the quadratic equation
V

[
ln A1

T
LT

]
= V

[
ln A0

T
LT

]
. This equation may have two, one or zero roots (in the field of real numbers).

The discussion of the various cases is simplified by the assumption that the LHP is perfect. Indeed,
the variance of the log funding ratio in this case simplifies to:

V

[
ln AT
LT

]
= x2[σ2

S + σ2
L − 2σSσLρS,L]T = x2TE2

ST,
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where TES is the annualised tracking error of the equity benchmark with respect to liabilities. Thus,
excluding the negative root of the variance-matching equation, we have:

x1 = TES0
TES1

x0.

In particular, the allocation to S1 is higher than the allocation to S0 as long as S1 has lower
tracking error. In other words, for a given risk budget (defined as the variance of the log terminal
funding ratio), one can allocate more to the equity benchmark that has the lower tracking error. The
corresponding change in LUG is given in the following proposition (proved in Appendix C).

Proposition 2.5. (Change in LUG under Equal Variances) Consider two equity benchmarks
S0 and S1, and one bond benchmark B that perfectly replicates liabilities. For each equity benchmark
X = S0 or X = S1, let TEX be the instantaneous tracking error with respect to liabilities, and µX/L
be the expected return of the funding ratio X/L. For any initial allocation x0 to the benchmark S0, the
change in LUG associated with the variance-matching allocation to the benchmark S1 is given by:

∆LUG =
[
TES0
TES1

µS1/L − µS0/L

]
× x0T.

∆LUG is a linear function of x0 and T , so the sign neither depends on the allocation to the bench-
mark S0 nor on the investment horizon. This sign depends on the expected returns and volatilities of
the benchmarks, expressed in relative terms with respect to liabilities: these parameters are themselves
functions of the expected returns, volatilities and correlations with liabilities of the benchmarks.

For a given benchmark S0, a given horizon T and a given allocation x0, ∆LUG is a function of
two variables, namely (TES1, µS1/L). The indifference curve is the set of pairs such that ∆LUG is
zero (i.e. such that the investor is indifferent between Strategies 0 and 1). It is described by:

µS1/L = TES1
TES0

µS0/L = F (TES1).

If µS1/L > F (TES1), that is if S1 lies above the indifference curve in the (TES1, µS1/L)-diagram,
then ∆LUG is positive. The opposite holds if µS1/L < F (TES1). A graphical representation enables
us to immediately visualise whether the replacement of S0 by S1 in the portfolio leads to a welfare
improvement. At the end of Section 4, we will present examples of these indifference curves and their
application to the selection of equity benchmarks leading to welfare improvements from an asset-
liability management perspective.

The welfare change is unambiguously positive if S1 dominates S0 in the "relative mean-variance
sense", that is, if the funding ratio S1

L has both lower tracking error and higher expected return than
the funding ratio S0

L . This makes sense: as explained above, lowering the tracking error of the equity
benchmark allows one to allocate more to this building block without increasing the relative risk of
the portfolio, and if the new benchmark has sufficiently higher expected return than the old one, the
result is an increase in performance.
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Overall, this analysis shows that welfare gains can be expected from decreasing the tracking error
of the equity benchmark with respect to liabilities, unless this comes at too high a cost in terms of
expected return. In the next sections of this paper, we conduct a thorough empirical study of the
problem to construct equity benchmarks with reduced tracking error. Given the difficulty in forming
reliable expected return estimates (Merton (1980)), the portfolio exercises that will be performed in
Section 4 focus on achieving the highest possible degree of diversification, which is the most natural
approach to reduce any excess of unrewarded risk from a given portfolio.

3 Introducing Formal Measures of Liability-Friendliness

Broadly speaking, there are two main ways of formally defining the notion of liability-friendliness.

- An economically-motivated definition based on cash-flow matching: The cash-flow matching
approach to liability hedging aims at finding securities whose dividend or coupon payments
match the liability payments as closely as possible, both in terms of size and schedule. In this
context, a stock can be said to be more liability-friendly if it enjoys higher and more stable levels
of dividend yield, that is dividends paid for each $100 invested.

- A statistically-motivated definition based on factor exposure matching: Since perfect cash-flow
replication is typically difficult to achieve in practice, investors who need to hedge liabilities may
instead choose to match the risk factor exposures of their assets with those of their liabilities.
The objective pursued in this case is to immunise the funding ratio against variations in the risk
factors that impact liabilities, and the success is measured in terms of tracking error with the
liability proxy. In this approach, stocks with low tracking error with respect to liabilities should
therefore be more attractive than the average in terms of liability-hedging purposes.

Obviously, these two perspectives are not mutually exclusive and we shall examine in Section 4 the
impact of a joint selection procedure based on a combination of criteria focusing on an economically
motivated criterion (such as dividend yield) and a statistically motivated criterion.

We now turn to a review of the related literature, which can accordingly be split into papers that
have looked at the drivers of dividend yields and dividend yield stability, and papers that have looked
at the relationship between stock return and risk factors impacting bond returns taken to be a proxy
for liability returns.

3.1 Definition of Liability-Friendliness Based on Cash-Flow Matching

The purpose of this section is to characterise the stocks whose cash flows are the best at matching
bond cash flows. We start by recalling that the one period total return of a stock can be decomposed
in the following way:
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Rt,t+1 = St+1 +Dt,t+1
St

− 1 = St+1
St
− 1 + Dt,t+1

St
,

where St is the time-t price of the stock and Dt,t+1 is the amount of dividend paid between t and
t + 1. The stock return can therefore be decomposed into two terms: the ex-dividend price return
and the dividend yield. The principle of cash-flow matching requires that future pay-offs be as high
as possible while having as small a variance as possible.

Fama and French (1988) report that over the 1926-1986 period, the mean annual price returns
of value-weighted NYSE portfolio was 9.2% while their standard deviation was 20.6%. Over the
same period, the mean of the corresponding dividend yields was 4.7% for a standard deviation of
1.2%. In other words, while the mean of dividend yields was equivalent to half of that of price re-
turn, their standard deviation was 17 times smaller, suggesting that dividends can provide a safer
resource for matching fixed pension liabilities. Looking at aggregate S&P 500 data over 1935-2001,
Ang and Liu (2007) report average returns of 12.5% with 16.9% standard deviations while the figures
are 4.0% and 1.5% for dividend yields. The ratio between the standard deviations is equal to 11.26.
Over the 1946-2006 period, Chen et al. (2012) also report standard deviations of S&P 500 dividend
yields of 1%, but they do not provide the corresponding volatility of stock returns (which we esti-
mated to be 14.1% using the monthly returns of Robert Shiller’s stock market data - available at
http://www.econ.yale.edu/s̃hiller/data.htm). All of these figures show that price returns are 10 to 20
times more volatile than dividend yields while they are only 2 to 4 times larger on average. This is one
motivation for focusing on the dividend yield portion of the total return which is much less subject
to large variations and hence more reliable for cash-flow matching purposes. Another motivation for
selecting stocks paying a high dividend yield is that the use of dividends to meet pension payments
reduces the turnover of the portfolio since it reduces the amount that would have to be liquidated to
match the cash-flows.

More formally, we have the following variance decomposition:

V (Rt,t+1) = V

(
St+1
St

)
+ V

(
Dt,t+1
St

)
+ 2Cov

(
St+1
St

,
Dt,t+1
St

)
,

where the third term is usually negligible because the correlation between price returns and dividend
yields is close to zero (this stems from the fact that dividend yields are always positive while the sign
of returns alternates and the terms in the covariance often cancel out). In the next section, the case
will be made for the reduction of the whole return variance, in order to lower the tracking error. In
this section, we focus on the second term, which is the one that can be lowered to very small levels
(1% or 2% standard deviation) while being associated to strictly positive cash-flows.

The average dividend yield is straightforward to compute. It is the primary variable for the size of
the cash-flow arising from dividend payments. In our framework, high average dividend yields must
be combined with low variance of dividend yields. At the aggregate level, there is no technical hurdle
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in the computation of dividend yield variability. At the individual stock level, on the other hand,
problems arise. First, we want to be able to compare stocks in the cross-section, and a firm with
high average dividend yield will mechanically have a higher dividend yield variance. Normalisation
procedures (dividing times series by their mean for instance) do not provide satisfactory answers to
this problem because a constantly increasing series will be penalised compared to a series oscillating
around its mean (and furthermore, some series have a zero average and cannot be normalised). One
better solution is to look at the variance of dividend yield growth (i.e. dividend yield return). Not
only does this eliminate the size effect, but it also addresses possible stationarity issues which may
arise when working with raw dividend yield series. Unfortunately, the computation of the variability
of dividend growth is only possible for strictly positive series (when firms pay a dividend each year
without any exception) which are in fact rare in data samples.

From a technical standpoint, it is consequently hard to estimate dividend yield volatility at the
individual firm level, because companies may cease to pay dividends for some periods of time. This
creates outliers in the dividend yield series, and perturbs the computation of volatility. In view of
this technical difficulty, it would be of interest to have proxies for the uncertainty in dividend yield or
dividend yield growth, either observable or easier to estimate than the volatility of the dividend yield
process. This exercise, to which we turn after a brief review of the related literature, is the objective
of Section 3.1.2.

3.1.1 Review of the Related Literature

A number of articles have analysed the relationship between dividend yields and stock returns. For
instance, using a specific parametric model (where dividend yields are mean-reverting through a
square-root process), Ang and Liu (2007) show that the conditional drift of stock returns is increasing
in the dividend yield, while the conditional volatility of returns decreases with dividend yields.

In a seminal article, Campbell and Shiller (1988) provide an approximate representation of the log
dividend yield as the expectation of a linear combination of future discount rates and future dividend
growth. The variance of the dividend yield can then be decomposed into a component that stems from
the future discount rates and one that can be attributed to future dividend growth. While Cochrane
(2011) finds that the larger of the two is the first one for the aggregate market, Maio and Santa-Clara
(2014) show that there are in fact large cross-sectional differences and that future dividend growth is
more important when looking at portfolios of value or small cap stocks.

An alternative way of addressing the question is to consider the following second order Taylor
approximation:

V

(
D

S

)
≈ V (D)
E(S)2 − 2 E(D)

E(S)3Cov(S,D) + E(D)2

E(S)4 V (S),

where S denotes the stock price and D the dividend.
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If the variance of S is not too large,5 then dividend yield variance is increasing in dividend variance.
Accordingly, an analysis of the literature on dividend variability may provide useful insights.

From a theoretical standpoint, dividends and stock prices are linked by the discounted cash-flow
(or present-value) model. In its most general form, the price of the stock at time t is given by

St = Et

[ ∞∑
k=1

Mt,t+kDt+k

]
,

where Et is the expectation conditional to the information available at time t andMt,t+k =
∏k
j=0Mt+j

is the product of a stochastic discount factor between date t and t+k. The classical Gordon model is
obtained when the discount factors are constant through time(Mt+j = (1 + r)−1) and when Dt+k =
Dt(1 + g)k (i.e. the growth of dividend is also assumed constant in time), with g < r.

In order to better understand the determinants of dividend decisions at the firm level, we now
turn to the literature which focuses on the drivers of corporate dividend policy. In their article on the
characterisation of firms which pay out, Fama and French (2001) find that "dividend payers tend to be
large, profitable firms". However, even after controlling for characteristics such as size, book-to-market
or profitability, they observe a decline in the propensity to pay dividends, from the 1970s to the late
1990s. Hoberg and Prabhala (2009), in addition to the factors proposed in Fama and French (2001),
study the impact of risk variables. They perform logit regressions (1 if firms pay dividends and 0
if not) on idiosyncratic and systematic risk variables. Their results show that the propensity to pay
dividends is negatively exposed to both sources of risk after controlling for the Fama-French factors.
These negative exposures are strongly statistically significant. They report that "risk is a significant
determinant of the propensity to pay dividends, and it explains roughly 40% of disappearing dividends".
Consequently, a firm is more likely to maintain its dividend payments if it is less risky.

Coming back to the issue of cash-flow stability, we examine the cross-sectional determinants of
dividend variability through the lens of dividend smoothing. From an accounting standpoint, dividends
are by nature essentially driven by earnings. Lintner (1956) proposes the following model of a dividend
adjustment based on earnings (denoted as Et):

∆Dt = α0 + α1Et + α2Dt−1 + εt,

where −α1/α2 is the target payout ratio (TPR), that is, the proportion of earnings that the company
wishes to distribute as dividends. This model is meant to reflect the fact that firms, when facing a
strong increase in earnings, do not raise their dividend so as to maintain a constant TPR. Instead,
they cap the increase in dividends in order to avoid having to cut them in the event of a future
negative shock on earnings. In doing so, they smooth their dividend payments. This can be measured
by the speed of adjustment (SOA), equal to −α2: a firm that smooths its dividend has a SOA close

5More precisely, if σS < σDρD,SE(S)/E(D), where ρD,S is the correlation between the two variables. This condition
is realistic when looking at short to middle term horizons (2-10 years) or when considering low volatility stocks.
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to zero. Alternative practical definitions of dividend smoothing can be found in Chen et al. (2012)
or in Leary and Michaely (2011). In the latter reference, the authors show that young, small firms,
with low dividend yield and high volatility of returns, smooth less than their older and less volatile
counterparts. They divide their dataset into quintiles of SOA and show that the SOA and stock
volatility are positively correlated (i.e. that the lowest average volatility is associated to the first SOA
quintile while the highest average volatility corresponds to the last SOA quintile). This relationship is
monotonic over the five quintiles. Similarly, they show that the relationship is reversed when looking
at dividend yields: the firms that are the most likely to smooth are those with the highest dividend
yields. Overall, the literature on dividend variability points out the same favourable characteristics
as those mentioned by Baker and Wurgler (2012) for bond-like stocks: low volatility, high dividend
yield and large size. These features sound intuitive, as they point towards mature, dividend paying,
companies.

Regardless of the specific model that is assumed, and regardless of the drivers of dividend variabil-
ity, a broad intuition conveyed by the discount dividend model is that stock return volatility should be
increasing in the volatility of future dividends. A large number of papers have actually proposed the-
oretical models which lead to an explicit (and often affine) relationship between dividend uncertainty
and stock volatility. For instance, in Campbell et al. (1997), the variance of future expected returns
is equal to the variance of news about future dividends plus an additional term. Furthermore, the
model proposed by Wu (2001) implies that the conditional variance of future returns is proportional
to the conditional variance of dividend growth. Another example is the aggregate model of Bansal
and Lundblad (2002), in which the market conditional volatility is an affine function of the market
cash flow volatility. Further references of such relationships are provided by Spiegel (1998) and Li and
Yang (2013). Other similar relationships are obtained for the variance of the price-dividend ratio in
Cochrane (1992) or the variance of the log dividend-price ratio in Ang (2012). A common conclusion
of these articles is that stock volatility is increasing in dividend or dividend growth volatility, with the
key implication that low volatility stocks are likely to be stocks with stable dividend streams.

3.1.2 Empirical Characterisation of Stocks with Higher Cash-Flow Matching Capacity

In order to confirm the insights from the literature, we want to investigate the link between dividend
variability and other stocks’ attributes in our dataset. Following the results of Baker and Wurgler
(2012), we empirically analyse various selection criteria based on volatility, dividend yield and capi-
talisation, and we measure the impact in terms of out-of-sample average dividend yield and dividend
yield volatility.

As explained above, this analysis would be difficult to carry out at the stock level: indeed, stocks
pay dividends only a few times in a year, and the payment dates for a given firm may vary from
one year to another. This results in a series with low frequency and irregularly spaced observations.
Moreover, it often happens that a stock does not pay dividends in a given year: thus, the dividend
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yield series may jump to zero from one year to another. Clearly, the sample volatility of such a series
would not be reliable (and the standard deviation of dividend yield growth in this case is not even
finite when dividends fall to zero). In order to have a series with smoother growth, we aggregate stocks
in portfolios: in this case, the series are strictly positive and the dividend yield growth is well defined.

Our data is extracted from the CRSP/Compustat database, and covers the 1946-2013 period. We
filter stocks in order to exclude outliers6 in returns and dividend growth, and to retain only the firms
traded for at least 30 years and which have had at least 15 years of an active dividend policy. This
narrows the universe to 2,623 stocks. Each year t between 1956 and 2012, we split the stocks into
deciles based on the volatility of their annual returns over the past ten years. We accordingly build
ten EW portfolios, ranging from the one which is expected to be the least volatile to the one which
bears the largest ex-ante individual risks. We average the corresponding dividend yields over the
following year for each portfolio and perform a new split at the end of the year. At the end of the
sample, we have ten annual time series and we compute the average and the volatility of each series
(that is, the standard deviation of the returns of the series). Moreover, we provide the out-of-sample
volatility (standard deviation of annual returns) of each portfolio. The dividends are extracted from
the Compustat database (item "Dividends Common/Ordinary"), the dividend yield is computed as
the ratio of Compustat item "Dividends Common/Ordinary" paid between year t− 1 and year t and
Compustat item "Capitalization" at year t−1. In addition, we perform the same analysis but building
portfolios on deciles of dividend yields and capitalisation. These criteria are averaged over the past 10
years. The results are summarised in Table 1. In order to compare the significances of the relationships
between the standard deviation of time series and the tested criteria, one can use the HAC p-value
proposed in the comparison test of Ledoit and Wolf (2011). We compare the first and last times series,
that is the portfolios based on the extreme deciles. The last column of the table indicates that the
difference in dividend yield volatility between the extreme deciles is indeed significant.

The portfolios sorted on volatility display the expected pattern: the standard deviation of the
growth rates of the dividend yield is increasing in stock volatility, which confirms the link between
stock return volatility and volatility of dividend growth (see also the predictions of an explicit asset
pricing model in Section 3.2.3 in case of low or moderate levels of correlation between the interest
rate and the dividend process). The monotonicity is almost strict even though the second-to-last
decile breaks the increasing pattern. It is thus found that low stock volatility signals low uncertainty
for dividend growth, which is one attribute of bond-like liability-friendliness. Moreover, the average
dividend yield (Panel A) is strictly decreasing with stock volatility (it is the opposite for out-of sample
volatility in Panel C). Therefore, low volatility stocks will have two favourable features for cash-flow
matching, namely higher average dividend flows and lower variability of these flows.

The exact same conclusions hold for the selections based on dividend yields, but the magnitudes
are even larger: the spread in average dividend yield between extreme deciles is equal to 4.65% for the

6An observation is characterised as an outlier if it is larger than the mean of the sample plus ten standard deviations
of the sample or if it is smaller than the mean minus ten standard deviations of the sample.
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Criterion Deciles
1 2 3 4 5 6 7 8 9 10 p(10-1)

Panel A: Average dividend yield of portfolios(%)
Volatility 7.51 5.91 5.20 4.56 4.39 4.24 3.89 3.42 3.22 2.86
Dividend Yield 1.23 2.14 2.61 3.05 3.53 3.93 4.40 5.11 6.55 12.3
Capitalisation 4.11 4.55 4.65 4.38 4.68 4.96 4.61 4.33 4.53 4.21

Panel B: Standard deviation of dividend yield growth (%)
Volatility 16.5 16.7 18.0 19.9 20.7 22.3 23.8 31.7 27.6 33.6 <0.01
Dividend Yield 34.8 26.2 21.8 22.0 19.3 20.0 18.5 16.7 18.6 16.0 <0.01
Capitalisation 23.8 26.8 26.0 16.6 20.8 19.7 22.8 17.3 19.3 15.0 <0.01

Panel C: Volatility of portfolios (%)
Volatility 13.7 14.0 14.5 15.9 16.4 16.3 18.6 19.8 21.3 24.2 <0.01
Dividend Yield 21.1 17.9 17.3 18.5 17.9 17.1 15.6 17.0 15.6 16.2 <0.01
Capitalisation 25.2 21.8 20.3 19.0 19.0 17.6 17.9 17.0 16.7 14.4 <0.01

Table 1: Average dividend yields and dividend yield volatility. The sample comes from the
annual Compustat / CRSP database over the period 1946-2012. Firms with less than 30 years of data and
15 years of active dividend policy are excluded. At the end of each year t, the firms are sorted in deciles on
one criterion (volatility, dividend yield, capitalization) computed over the past 10 years. The average dividend
yields corresponding to each decile are then computed based on their value of year t + 1. The procedure is
repeated until the end of the sample. The table reports the average dividend yield and the standard deviation
of the returns of the dividend yield of each decile. The last column provides the HAC test p-value detailed in
for the difference between the variances of the first versus last decile.

volatility selections, but it reaches 11.1% for the dividend yield selections. Likewise, for the volatility
of dividend yields, the spread is 17.1% for the volatility selections and 18.8% for the dividend yield
selections. However, the pattern is less pronounced for the out-of-sample volatility of the portfolios
(Panel C). These results are in line with the findings of Leary and Michaely (2011), who show that
high dividend yield and low risk firms tend to smooth their dividend policies more than their risky, low
dividend counterparts. Accordingly, a selection of high dividend yield stocks is expected to potentially
be as relevant as a selection of low volatility stocks for cash-flow matching purposes.

On the other hand, the results for the portfolios based on the capitalisation do not show a clear,
monotonous impact on average dividend yield, or on the standard deviation of dividend yield growth,
even though they suggest that large cap firms show significantly lower dividend yield uncertainty
compared to the smallest cap firms. Panel C is an illustration of the the well-known stylised fact
that small cap firms are more volatile than their large cap counterparts. While it is more difficult
to discriminate on this criterion within either the small or the large cap universe for the purpose of
constructing portfolios with enhanced cash-flow matching capability, one insight we obtain is that
larger cap stocks should be broadly preferred to smaller cap stocks. For this reason, and also because
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of the higher liquidity on large cap stocks (and longer available time-series), we shall restrict our
analysis to the S&P 500 universe in Section 4.

3.2 Definition of Liability-Friendliness Based on Factor Exposure Matching

The second approach to the selection of stocks with enhanced liability-friendliness requires the use
of specific criteria to assess the statistical proximity between stock returns and factors impacting
liability returns. From the analysis in Section 2, it appears that the most straightforward indicator
is the tracking error (TE) with respect to liability returns, defined as the standard deviation of stock
returns in excess of liability returns. Given that in this paper we assume the existence of a bond index
with the relevant duration that can be taken as a perfect proxy for the liabilities, this measure of
tracking errors of stocks with respect to liabilities can be written as a function of the stock and bond
volatilities (σS and σB), and the correlation ρS,B between the two assets:

TES,L =
√
σ2
S + σ2

B − 2σSσBρS,B.

In particular, we find that the tracking error is decreasing in the stock-bond correlation (ρS,B). Thus,
everything else equal, selecting stocks that deliver a high correlation with bonds leads to a reduction
in the tracking error. The tracking error also depends on the stock volatility (σS): strictly speaking,
the impact is not monotonic since the tracking error is the square root of a quadratic function of σS .
In detail, the derivative of the tracking error with respect to σS is given by:

∂TES
∂σS

= 1
TES

× 2(σS − σBρS,B),

a quantity that is positive only if σS > σBρS,B. But as long as stock volatility is larger than bond
volatility, a condition which is most often satisfied in practice, the condition σS > σBρS,B is satisfied
(since the correlation is at most equal to 1). Hence, the tracking error is increasing in stock volatility, so
reducing tracking error also calls for choosing stocks with low volatility. Eventually, liability-friendly
stocks are to be searched among those stocks that have low tracking error with respect to bonds,
coming either from a high correlation with bonds, or low volatility, or ideally both. We note that the
relative importance of the two dimensions depends on the duration of the liabilities, with an expected
domination of volatility reduction for short duration liabilities.

Before formalising these intuitions in the context of a formal asset pricing model, we first review
the literature that has analysed the relationship between stock returns and bond returns, and the
related literature that has focused on the relationship between stock returns and changes in interest
rates.
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3.2.1 Cross-Sectional Differences in Stock-Bond Comovements

There is a large consensus that the correlation between stock and bond returns is strongly time
varying. At the level of an aggregate stock index, it has ranged between -60% and +60% over the past
few decades, and has experienced variations of ±20% from one month to the other (see Baele et al.
(2010)).7 This variability is exacerbated at high frequencies, as shown in Aslanidis and Christiansen
(2012). Another finding is that the correlation is linked to market conditions, being generally lower in
"bad" times. For instance, Andersson et al. (2008) report results "consistent with the ’flight to quality’
phenomenon" which "suggest that periods of elevated stock market uncertainty lead to a decoupling
between stock and bond prices". In the US market, Yang et al. (2009) find that correlations are
lower in recessions than in expansion periods. Thus, for stock indices, there seems to be a negative
relationship in time series between volatility and bond correlation. Connolly et al. (2005) also show
that the VIX level has predictive power with respect to the sign of the correlation: periods of high
uncertainty tend to be followed by negative correlations.

At the individual stock level, Baker and Wurgler (2012) study the impact of various attributes on
the "bond-beta" of stocks: this beta is estimated by regressing stock excess returns against the market
factor and a bond excess return. The inclusion of the market factor is standard in such regressions,
and aims at controlling for the effect of the dominant equity factor.

Among the characteristics considered by Baker and Wurgler (2012), some are observable, such as
size, dividend yield and book-to-market ratio, and the last one, namely volatility, is not. Interest-
ingly, the negative link between volatility and correlation observed in time series at the index level
is also found to exist in the cross-section: when stocks are sorted on volatility, the bond beta varies
monotonically across volatility deciles, the high volatility decile displaying the lowest value. More-
over, the bond beta is positive only for the highest two volatility deciles. In other words, it is the
stocks with the lowest volatilities that co-move the most strongly with bonds. Among the other tested
characteristics, only size (measured by market capitalisation) also gives rise to a monotonic pattern
across deciles: larger cap stocks have higher bond betas than smaller cap stocks, an effect which can
partially be related to the low volatility effect since large cap stocks tend to have lower volatility on
average compared to small cap stocks. The dividend-to-book ratio implies a quasi-monotonic pattern:
firms with high ratio tend to be more bond-like than the others. The age of the firm (as measured by
the time for which it has been listed in the CRSP database) also appears to be a potentially useful
characteristic: old firms tend to be more bond-like than the young ones. But the effect is not as
pronounced as it is for volatility, and, more importantly, the bond exposures are negative for all age
deciles, while deciles of stocks with low volatility, high dividend-to-book or large size display positive
betas. The book-to-market ratio (B/M) generates a U-shaped pattern: firms with extreme ratios are
less bond-like than those that lie in the middle. To the extent that very high ratios actually signal

7Several models have been developed to capture the time variation in the stock-bond correlation. See for instance
Cappiello et al. (2006), Guidolin and Timmermann (2006), Bekaert et al. (2010), Baele et al. (2010), Wu and Liang
(2011), and David and Veronesi (2013).
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distressed firms, this fact suggests that both growth firms and distressed firms are less bond-like than
those that have average ratios. All of these effects are observed both in the full sample and in "de-
coupling periods", which are periods where the aggregate market stock index covaries negatively with
the bond index.

Eventually, Baker and Wurgler (2012) find that the stocks with positive bond beta are those that
belong to one of these categories: large capitalisation; low volatility; or high dividend-to-book ratio. It
is remarkable that low volatility proves to be associated with high bond beta, while it is also desirable
for the purpose of narrowing the gap between stock and bond volatilities.

3.2.2 Cross-Sectional Differences in Equity Duration

As bond returns have a strong negative correlation with interest rate changes, the search for a high
stock-bond correlation is almost equivalent to the search for a strongly negative stock-interest rate
correlation (the two objectives would be mathematically equivalent if the correlation between bonds
and interest rates was exactly -1). In other words, one should be looking for stocks whose prices tend
to respond to interest rate movements in the same way as bond prices. Thus, if one has a measure of
" equity duration", defined as the sensitivity of a stock price with respect to interest rate variations, a
possible criterion for the selection of bond-like stocks is to retain stocks with positive duration. We
now review different methods for evaluating equity duration.

The notion of equity duration is meant as a quantitative measure of the link between stock prices
and interest rates. It provides a criterion to eliminate non bond-like stocks: indeed, a fixed-income
bond always has positive duration, so to be bond-like, a stock must have positive duration as well,
which excludes stocks with negative duration. Equity duration can also serve as a tool to construct
an equity portfolio that matches the duration of a given bond.

The literature on this topic can be divided in two strands:

- An analytical approach, which defines duration as the sensitivity to changes in an interest rate
proxy and relates it to other stock’s characteristics;

- A statistical approach, which treats duration as an interest rate beta and estimates it by regres-
sion techniques.

Analytical approach The analytical approach defines equity duration as the sensitivity to interest
rate changes, as is done for fixed-income securities. In the Dividend-Discount Model (DDM), the price
of a stock is viewed as the sum of cash flows discounted at a uniform rate k, the cash flow stream
having an infinite maturity (since stocks, unlike bonds, do not have a pre-determined lifetime). We
let δt be the dividend paid in period [t− 1, t], and k be the discount rate, so the current stock price is:

S0 =
∞∑
t=1

δt
(1 + k)t .
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As for bonds, one can define "modified" and "Macaulay" durations: 8

Dk,mod
0 = − 1

S0

∂S0
∂k

,Dk,mac
0 =

∞∑
t=1

t× δt
(1 + k)t = (1 + k)Dk,mod

0 .

The Gordon model (Gordon (1982)) assumes that dividends grow at a constant rate g, which
implies that modified duration is the reciprocal of the dividend yield (DY):

Dk,mod
0 = S0

δ1
.

Hence, high DY stocks have shorter durations than low DY ones. This property is natural given the
model’s assumptions: stocks that pay high dividends today, derive most of their value from short-term
cash flows, and thus have a shorter average life, exactly as bonds that pay a high coupon.

The assumption of a constant dividend growth rate is clearly restrictive. Dechow et al. (2004) relax
it by introducing an alternative model for cash flow evolution until a forecasting horizon (which they
take equal to 10 years). Dividends are constant after the horizon in question. However, the model
still assumes a deterministic evolution. Under specific assumptions (including notably zero growth in
equity), the authors are able to relate Macaulay duration to standard financial ratios: duration can
be expressed as an increasing function of the price-earnings ratio, and as a decreasing function of the
book-to-market ratio.

The assumption of deterministic cash flows is hardly appropriate for stocks, especially for those
that have the opportunity to start new business in the future. Thus, Leibowitz and Kogelman (1993)
introduce a " Franchise Factor Model" that makes an explicit distinction between the "tangible value",
derived from the continuation of current business, and "franchise value", which comes from future
business opportunities. Assets in place typically have a long duration, but the cash flows generated
by future projects can vary with interest rates, which makes their duration more difficult to predict.
Hevert et al. (1998) note that if growth options were analogous to European call options, they would
contribute negatively to duration, since the value of a call is increasing in the interest rate. On the
other hand, growth options do not have a fixed exercise price, so their effect on duration is unclear.
Overall, one expects that firms that derive most of their value from assets in place will have higher
durations than those with growth options.

Another issue raised by the standard DDM is that it treats the discount rate and the cash flows
as independent variables, thereby ignoring the " flow-through" effect, namely the joint impact of an
interest rate shock on both variables. Leibowitz et al. (1989) argue that this leads to overestimating
equity duration, and they introduce an adjustment to the DDM duration that corrects for the impact
of interest rates on cash flows. Qualitatively, the flow-through effect will be higher for firms whose cash
flows increase when interest rates increase than for firms whose cash flows are relatively insensitive to

8The two definitions would coincide if the discount rate was continuously compounded (see the appendix in Leibowitz
et al. (1989)).
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interest rates, and the latter stocks will have higher durations. In particular, sectors with low pricing
power, such as utilities, are expected to fall in this category.

The DDM is not the only model that allows for the derivation of equity duration. As explained in
Fishwick (2013), the Capital Asset Pricing Model of Sharpe (1964) can also be used for this purpose.
Indeed, under the CAPM’s assumptions, the conditional expected return on a stock is a function of
its market beta:

Et

[
St+1
St
− 1

]
−Rft = β(Mt −Rft),

where Mt is the expected return on the market portfolio and Rft is the one-period risk-free interest
rate. Rearranging terms, we obtain:

St = Et[St+1]
1 + βMt + (1− β)Rft

.

Hence, stocks with β > 1 have a price increasing with the risk-free rate, and the opposite holds
for β < 1. In other words, stocks with β < 1 are like bonds, while the others are not. This analysis
again calls for the selection of low-beta stocks, and suggests that the reported outperformance of low
volatility stocks (the so-called low volatility anomaly of Ang et al. (2006, 2009)) can be explained by a
stronger exposure to interest rate changes over a sample period where interest rates have been mostly
decreasing. A similar criterion can be found in Casabona et al. (1984), who show in the context of
the DDM that equity duration is decreasing in the discount rate k, and that the CAPM implies that
k is increasing in the market beta. Hence, duration is decreasing in the market beta. This theoretical
prediction is of course consistent with the empirical finding of Baker and Wurgler (2012) that low
volatility stocks (which tend to have low betas) are more bond-like compared to other stocks.

Statistical Approach The general principle is to regress the realised return on an interest rate
factor, with possible inclusion of additional control variables:

rSt = α+ βrFrt + βc1Fc1,t + · · ·+ βcnFcn,t + εt,

where rSt is the realised stock return in period [t− 1, t], Frt is the interest rate factor and Fc1,t, . . . ,
Fcn,t are n control variables.

As far as the interest rate factor is concerned, the most common option is to take the change in
a long-term sovereign interest rate and equity duration is then identified with (−βr). This choice is
made in Sweeney and Warga (1986), Hevert et al. (1998) and Reilly et al. (2007). The identification of
(−βr) with equity duration is justified by the fact that for a bond index, the above regression returns
an interest rate beta which is close to the negative of modified duration (see Reilly et al. (2007)).
Cornell (2000) makes a different choice of regressor, advocating the use of the return on a Treasury
bond in order to have an exact matching of dates for returns on both sides of the regression equation,
in which case duration is directly measured by βr. He also argues that since bond returns are strongly
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negatively correlated with yield changes, the durations obtained by this method should be close to
proportional to those obtained with an interest rate change.

Regarding the inclusion of other control variables, since the market is the dominant factor in equity
returns, it is likely that a univariate regression on Frt would only reflect differences in the market
exposures (see Cornell (2000) for a discussion). This motivates the introduction of the market factor
as a control variable, a specification taken in Hevert et al. (1998), Cornell (2000), Reilly et al. (2007).9

Sweeney and Warga (1986) adopt a different form, where the market factor is first orthogonalised
against Frt. While it can be shown that this leaves the interest rate beta and its t-statistics unchanged,
this second specification is better suited to find whether the interest rate factor in itself is rewarded (i.e.
if it carries an independent risk premium above and beyond the premium arising from the correlation
with the market). Using the bivariate analysis, Hevert et al. (1998) find that low B/M portfolios
have lower durations than high B/M ones, but this conclusion is questioned by Cornell (2000), who
shows that the effect is not monotonic across quintiles of B/M. In fact, his results suggest a U-shaped
impact of B/M, which is reminiscent of the effect documented by Baker and Wurgler (2012) for the
stock-bond correlation: duration is higher for middle quintiles of B/M than in the extreme classes.
The regression approach also enables a size effect to be recovered, as in Baker and Wurgler (2012):
Cornell (2000) and Reilly et al. (2007) find that duration is increasing in market capitalisation. The
size effect almost disappears when all three Fama-French factors are introduced as control variables.
Cornell (2000) attributes this to the significant statistical relationship between the interest rate and
the size factors. Reilly et al. (2007) also find differences across sectors: technology and electronic
equipments, which have more pricing power than utilities and food, also have lower, and sometimes
negative, durations. They interpret this sector effect as the result of different pricing powers: in a
period of surging inflation, technological firms can raise their prices more easily than their utility
sector counterparts, because they produce high added-value goods, for which no substitute is available
on the market. Thus, if an interest rate rise follows from a positive inflation shock, the cash flows
of the former firms will react more than those of the latter, which will tend to offset the impact on
the discount rate. Hence, it is expected that stocks that belong to sectors with low pricing power will
display higher durations.

From the time series perspective, the statistical estimate for equity duration shares at least one
property with the stock-bond correlation: it is a highly time-varying measure. Reilly et al. (2007)
find that the duration of a given stock index estimated over a rolling window can even change sign
over time. On the other hand, the duration of a bond index is always positive and in any case much
more stable over time. From a liability hedging standpoint, the instability of equity duration makes
it difficult to construct a duration-matching portfolio based on this measure.

9The bivariate regression of stock returns on bond returns and market factor is also the specification taken in Baker
and Wurgler (2012), although they do not call the resulting bond beta the duration of the stock.
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3.2.3 Predictions from an Asset Pricing Model

So as to better analyse the drivers of stock returns and their relationship with liability returns, we
now look at the characteristics of bond-like stocks in the context of a formal asset pricing model. To
this end, we introduce a continuous-time model, where stocks are represented as claims on uncertain
dividends, and bonds are claims on a stream of fixed coupons.

State Variables and Asset Prices As in Section 2, uncertainty is represented by a probability
space (X,F ,P ) equipped with a two-dimensional Brownian motion (zt)t≥0 and equipped with the
filtration (Ft)t≥0 generated by this process. The time span is [0,∞[. It is infinite because we will
consider securities that make perpetual payments.

We again assume that the short-term interest rate follows the Vasicek model Vasicek (1977):

drt = a(b− rt)dt+ σ
′
rdzt,

where σr denotes the 2×1 volatility vector. With a constant price of interest rate risk, this model
implies that the price of a zero-coupon bond paying $1 at date ti is an exponential affine function of
the short-term rate:

p(t, ti) = exp[−D(ti − t)rt + E(ti − t)],

where the duration and the constant term are given by:

D(s) = 1− exp[−as]
a

,

E(s) = b[D(s)− s] + σ2
r

2a2

[
s− 2D(s) + 1− exp[−2as]

2a

]
,

b̃ = b− σrλr
a

.

The parameter b̃ is the long-term mean adjusted for the price of interest rate risk.
We consider for simplicity a perpetual bond that pays annual coupons, all equal to C: the annual

dates (end of calendar year) are denoted with t1, t2, . . . , ti, . . . In the absence of arbitrage opportunities,
the bond price is the sum of the discounted coupon payments:

Bt = C
∞∑
i=1
ti>t

p(t, ti).

Note that with this formula, the bond price is right-continuous and discontinuous on the coupon dates,
the price dropping by an amount equal to the coupon payment:

Bti −Bti− = −C.
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From a technical perspective, it is desirable to exclude infinite values for the infinite sum that
defines the bond price. To find out which combinations of parameter values avoid such infinite values,
we use the D’Alembert criterion. It can be shown that the ratio p(t,ti+1)

p(t,ti) shrinks to zero if, and only
if:10

b̃− σ2
r

2a2 > 0.

We will thus restrict our attention to parameter values that satisfy this condition.
The stock is a claim on an infinite dividend stream. For simplicity, we assume that the dividend

payment dates coincide with the coupon dates, and that the dividends are sampled from a Geometric
Brownian motion:

dδt
δt

= µδdt+ σ
′
δdzt.

The stock price is thus the present value of the dividend stream δt1 , . . . , δti , . . . In order to price the
dividend payments, we assume the existence of a constant price of risk for dividend risk, λδ, and we
let λ denote the price of risk vector, defined by:

λ = σ(σ′σ)−1

σrλr
σδλδ

 .
Thus, the pricing kernel (Mt)t≥0 is:

Mt = exp
[
−
∫ t

0

(
rs + ‖λ‖

2

2

)
ds−

∫ t

0
λ′dzs

]
.

We recall that the defining property of a pricing kernel is that the value of any self-financing
portfolio divided by Mt follows a martingale. With these notations, the price of the payoff δti at date
t is the conditional expectation of

(
Mti
Mt

δti

)
. Hence, the stock price is:

St = δt

∞∑
i=1
ti>t

Et

[
Mti

Mt
δti

]
.

After some algebra, we arrive at the following expression:

St = δt

∞∑
i=1
ti>t

exp
[
(µδ − σδλδ)(ti − t)−

σrσδρrδ
a

[ti − t−D(ti − t)]
]
p(t, ti).

Of course, we recover the expression for the bond price by taking a constant dividend process.
More generally, as the bond price, the stock price is right-continuous, and the discontinuities occur

10Using the D’Alembert criterion, the bond price is infinite if b̃ − σ2
r

2a2 is negative, and the criterion is inconclusive as
to the convergence of the infinite series when this quantity is zero.
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on the dividend payment dates. Moreover, an application of the D’Alembert criterion shows that a
sufficient condition for the stock price to be finite is:

µδ − σδλδ −
σrσδρrδ

a
< b− σ2

r

2a2 .

The stock price in our model has a similar (affine) form as the one in Lettau and Wachter (2007). The
main difference between the two approaches is that we consider the dividends and interest rates as
our two state variables while consider the dividends plus an additional non-observable state variable
which drives the stochastic discount factor.

Model-Implied Bond and Stock Moments The bond and stock prices can be expressed as
functions of time and the state variables r and δ:

St = S(t, rt, δt), Bt = B(t, rt).

The dynamics of these two prices can be obtained by applying Ito’s lemma. To save space, we only
write down the expressions for the stock: those for the bond follow by setting the dividend growth
rate and volatility equal to zero, and the dividend value equal to the coupon payment. We have:

dSt
St

= [µS,t − δti × 1{t=ti}]dt+ σ
′
S,tdzt,

where the volatility vector and the ex-dividend expected return are given by:

σS,t = σδ + 1
St

∂S

∂rt
σr,

µS,t = rt + σδλδ + 1
St

∂S

∂rt
σrλr.

By definition, the quantity − 1
St

∂S
∂rt

, which represents the negative of the sensitivity of the stock
price with respect to the short-term rate, is the duration of the stock index. We denote it by DS,t. A
straightforward differentiation shows that the duration is:

DS,t =

∑∞
i=1
ti>t

D(ti − t)ct,tip(t, ti)∑∞
i=1
ti>t

ct,tip(t, ti)
,

where:
ct,ti = exp

[
(µδ − σδλδ)(ti − t)−

σrσδρrδ
a

[ti − t−D(ti − t)]
]
.

Thus, duration is a function of time and short-term rate only; in particular it is not impacted by
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dividends. The stock volatility is:

σS,t =
√
σ2
δ − 2DS,tσrσδρrδ +D2

S,tσ
2
r .

The bond volatility has the familiar expression as the product of duration by interest rate volatility:

σB,t = DB,tσr.

We also note that the expression for the volatility vector of the stock bears formal resemblance with
the expression for the volatility vector of an inflation-indexed zero-coupon bond (see Martellini and
Milhau (2013)). This is not surprising, given that the stock price in our model can be seen as the
price of a portfolio of zero-coupon bonds indexed on dividends.

In addition to volatilities and expected returns, the model also implies an explicit expression for
the instantaneous stock-bond correlation. This quantity is defined as:

ρSB,t =
σ
′
S,tσB,t

σS,tσB,t
,

so that:
ρSB,t = DB,tσr[−σδρrδ +DS,tσr]

σS,tσB,t
.

Finally, it is also possible to compute the tracking error of the stock with respect to the bond: it is
defined as the instantaneous standard deviation of the ratio St

Bt
. An application of Ito’s lemma shows

that it is equal to the Euclidean norm of the vector [σS,t − σB,t]. Hence:

TES,t =
√
σ2
S,t + σ2

B,t − 2σS,tσB,tρSB,t.

All these instantaneous moments (expected returns, volatilities, correlation and tracking error) are
stochastic, in that they not only depend on time, but also on the short-term rate; on the other hand,
they do not depend on the dividend level in the context of the model.

Numerical Implementation We now study the impact of the dividend process parameters on
the tracking error of the stock index with respect to the bond index, as well as the impact on the
two main drivers of the tracking error, namely the stock-bond correlation and the stock volatility. As
explained in Section 2, the TE is a natural measure of the proximity between a stock and a bond, but
it is also interesting to look at the contributions of stock volatility and stock-bond correlation to this
measure.

Model-implied volatilities and the correlation are functions of the short-term rate; for a given set of
parameter values, we simulate 1,000 paths for the various stochastic processes (interest rate, dividend,
stock and bond prices), and we compute the correlation and the stock volatility according to the
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previous formulas. We then average the values across dates and states of the world, so as to come up
with estimates of the expected correlation, volatility and TE:11

E[ρSB,t], E[σS,t], E[TES,t].

We must specify a base case set of parameter values for the interest rate and the dividend processes.
For the interest rate model, we use the same values as Martellini and Milhau (2013), which are
calibrated to the US sovereign yield curve over the 1964-2010 period:

a = 0.0672, b = 0.0360, σr = 0.0231, λr = −0.3385.

For the dividend process, we fit a Geometric Brownian motion to the time series of aggregate
dividends of US stocks (S&P index) available on Robert Shiller’s website 12 for the 1946-2013 period.
We obtain:

µδ = 0.0254, σδ = 0.029.

Given it is likely that some stocks will have their dividend process positively correlated to the
short-term rate, while the correlation will be negative for some others, it is reasonable to take a
neutral view on the correlation ρrδ and to set it equal to zero in the base case.

Fixing the price of dividend risk is less straightforward, because this parameter cannot be directly
estimated from the data; in particular, it cannot be estimated as the stock Sharpe ratio, since the stock
is also exposed to interest rate risk. In order to set it to a realistic level, we search for the value that
matches the model-implied Sharpe ratio of the stock averaged across dates and states of the world,
and a long-term estimate for a broad US stock index. We use the estimates of Ibbotson (2013) for
the long-term excess return and volatility of US large-capitalisation stocks over the 1926-2012 period.
These values imply a long-term Sharpe ratio of 0.41. The choice for λδ that makes the model replicate
this value is λδ = 0.4388.

We focus on the growth rate and the volatility of the dividend process (µδ and σδ), and the
correlation (ρrδ) between the short-term rate and the dividend processes. The latter parameter is the
one that controls for the " flow-through effect". The general idea is that in the presence of a strongly
negative ρrδ, a positive shock to interest rates increases the discount rate but tends to drive dividends
downwards; this unambiguously decreases the stock price, as would be the case for a bond. In this
case, we thus expect a positive stock-bond correlation. On the other hand, if ρrδ is positive, then
the same positive shock will still increase the discount rate, but will tend to increase dividends. This
competition between the two effects, with a net impact on the stock price that depends on parameter
values, results in a lower bond correlation.

To assess the quantitative magnitude of this effect, we plot in Figure 1 the stock-bond correlation
11It makes sense to average correlation and volatility values across dates, because stock and bond returns in the model

are stationary (this would not be the case if the bond had a finite maturity).
12http://www.econ.yale.edu/∼shiller/data.htm
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as a function of σδ and ρrδ. We confirm that this correlation is decreasing in ρrδ, except of course
when dividends are deterministic (σδ = 0); in this case, the stock is perfectly correlated with the
bond, because it behaves like a " fixed- (or at least deterministic-) income" security. Hence, other
things being equal, stocks that are most bond-like are those whose dividends are strongly negatively
correlated with interest rates. The same mechanics explain why stock volatility is decreasing in ρrδ;
with a large ρrδ, the fluctuations in the two sources of uncertainty (interest rate and dividends) tend
to cancel each other, which decreases stock volatility.13 On the other hand, a negative ρrδ implies
that any shock on one of the two state variables will be reinforced by a shock in the opposite direction
on the other, which results in higher volatility. Hence, a lower ρrδ increases the correlation, which
should make the stock more bond-like, but it also increases the volatility, which leads to the opposite
conclusion.

Dividend volatility has a more straightforward effect on bond friendliness. A higher σδ implies
a decrease in the stock-bond correlation, which seems natural because a stock with highly volatile
dividends differs substantially from a fixed-income security. In general, it also produces an increase
in stock volatility. This is not systematically true, however. We observe in Figure 1 that for large
positive correlations, stock volatility is a U-shaped function of σδ. This effect arises because the
compensation between dividend and interest rate shocks can only take place if dividends are volatile;
in other words, a certain degree of uncertainty is needed for the offsetting effect to take place. On the
other hand, when dividends become very volatile compared to the interest rate, a marginal increase
in their variance translates into higher stock volatility. Apart from this exception, a higher σδ makes
the stock less bond-like (we shall see in Figure 2 that this result is robust with respect to changes in
the value of the dividend drift, µδ).

The figure also shows the net effect of σδ and ρrδ on the TE of stocks with respect to bonds. From
the previous observations, it is expected that this tracking error is in general decreasing in σδ, since
a lower σδ implies both a higher correlation and, often, a lower volatility. The only exception to this
rule is when ρrδ is very high and σδ is low; in this case only, an increase in dividend uncertainty may
reduce the TE, a property which was observed for stock volatility and which is transmitted to the
TE. On the other hand, what we learn from the third graph with respect to the first two ones is how
ρrδ impacts the TE. For high values of σδ, the TE is increasing in ρrδ, which shows that the volatility
effect dominates the correlation effect. This means that stocks with high flow-through effect (i.e. high
ρrδ) are less bond-like than the average. For low values of σδ, the TE is a U-shaped function of ρrδ.
This is the result of the conflict between the effects of ρrδ on volatility and correlation. Overall, it
should be acknowledged that the impact of ρrδ is not as strong as that of σδ; in other words, reducing
dividend uncertainty appears to be a more efficient way of lowering the TE.

In Figure 2, we turn to the joint effects of dividend volatility and growth rate. A first observation
13It can be verified that almost all tested combinations of parameter values imply a stock volatility which is higher

than bond volatility: indeed, the average bond volatility implied by our base case parameters, is 15.42% (it is, is of
course, the same for all pairs (σδ, ρr,δ)), and 88.1% of the tested combinations of parameters lead to a stock volatility
above this value.
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Figure 1: Impact of dividend volatility and interest-rate-dividend correlation. This figure
shows the model-implied stock-bond correlation, stock volatility and tracking error of stock with respect to
bond (these measures are averaged across dates and states of the world), as functions of dividend volatility (σδ)
and the correlation between the short-term rate and the dividend processes (ρrδ). Other parameters are fixed
at their base case values. Each correlation, volatility and tracking error is computed from 1,000 paths simulated
over a 5-year period with a monthly time step (thus, the average is taken over 120×1000 points).

is that σδ has the same impact on correlation, volatility and TE for all values of µδ: an increase in σδ
makes the stock less bond-like in all dimensions. The effect of µδ is less straightforward. On the one
hand, a higher µδ increases the correlation with the bond, but it also increases the volatility, and the
net effect turns out to be a higher TE. Thus, a higher dividend growth makes the stock less bond-like
in the sense of the TE. The impact of µδ on volatility can be explained by the impact on duration:
a large µδ signals high dividend payments in the future, which lengthens stock duration accordingly
(future payments become relatively more important than the short-term ones). This longer duration
increases stock volatility, as can be seen from the expression of the volatility, recalling that ρrδ = 0 in
the base case.
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Figure 2: Impact of dividend volatility and growth rate. This figure shows the model-implied
stock-bond correlation, stock volatility and tracking error of stock with respect to bond (these measures are
averaged across dates and states of the world), as functions of dividend volatility (σδ) and growth rate (µδ).
Other parameters are fixed at their base case values. Each correlation is computed from 1,000 paths simulated
over a 10-year period with a monthly time step.

In summary, the model highlights the key roles of the parameters σδ and ρrδ in discriminating
bond-like stocks. The impact of σδ is clear: other things being equal, stocks that are most bond-like,
in the sense of low volatility, high correlation and low TE with bonds, are those with low dividend
uncertainty. The impact of the flow-through effect, as measured by ρrδ, is less straightforward. On
the one hand, a lower ρrδ increases the stock-bond correlation; on the other hand, it increases stock
volatility. As a result, it is not clear whether or not a lower correlation makes the stock more bond-
like. The dividend growth has a similar effect. On the one hand, a higher µδ partly compensates
for dividend uncertainty, which has a positive effect on the correlation of stocks with very volatile
dividends. On the other hand, it increases stock volatility, which tends to make stocks less bond-like.
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3.3 Summary: Characterisation of Liability-Friendly Stocks

In conclusion, low volatility appears to be a key characteristic of liability-friendly stocks from a factor
matching perspective. This can be explained by a first, straightforward, effect. Selecting low volatility
stocks mechanically reduces the tracking error with respect to a bond index regarded as a liability
proxy as long as stocks are more volatile than bonds. There is also a less obvious effect, which is
mentioned in the literature: an analysis in the context of the CAPM suggests that equity duration is
decreasing in the market beta. Because low beta is often associated with low volatility, this shows that
low volatility stocks are more likely to have positive duration than the high volatility ones. As a matter
of fact, the empirical studies conducted in the literature lead to the conclusion that low volatility stocks
or defensive sectors have higher bond correlation and higher durations. From a cash-flow matching
perspective, low volatility stocks are also attractive. Indeed, both the theoretical model presented
in Section 3.2.3 and the empirical analysis of Section 3.1.2 suggest that low volatility of returns is
associated with high out-of-sample dividend yield and low dividend yield uncertainty. These multiple
favourable features clearly make a case for the selection of low volatility stocks.

The correlation of stock returns with the returns on a bond proxy is also an obvious criterion. The
first reason for this is because this correlation measures to what extent stocks are bond-like and it is
therefore natural to select the stock with the highest correlation with bonds. The second reason for
this is because the tracking error is decreasing in the correlation and hence, stocks with higher corre-
lation will have lower tracking error, all other parameters being equal. The correlation of dividends
with interest rates has been shown to be potentially useful in identifying bond-like stocks since it
quantifies the flow-through effect. The empirical literature shows that sectors or industries with high
pricing power (hence, high flow-through) have low or even negative durations, so the corresponding
stocks are not good approximations to bonds, and are correspondingly not well suited for liability
matching. In the context of the theoretical model, we find that the correlation has competing effects
on stock volatility and stock-bond correlation, the result being a decreasing or a U-shaped relationship
between the correlation and the tracking error. Since the effect of this correlation parameter on bond
friendliness is not as clear as that of dividend volatility, and in view of the practical difficulties raised
by the empirical measurement of the correlation between dividends and interest rates, we do not retain
it as a selection criterion.

The direct search for stocks with improved cash-flow matching ability is complicated by the fact
that dividend yield volatility is difficult to estimate at the individual stock level. Hence, it is useful to
characterise stocks with low dividend yield variability through alternative attributes which are either
observable or relatively easy to estimate at the stock level. As mentioned previously, low volatility
is one of these characteristics. A high stock-bond correlation may also help in this regard, since
the theoretical model shows that such high correlations can only be achieved in the presence of low
dividend volatility, unless the high dividend volatility is compensated by a strong flow-through effect
(that is, a high correlation between dividends and interest rates). This is yet another justification for
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the relevance of the stock-bond correlation criterion. On the other hand, our empirical analysis has
suggested that the most effective attribute for discriminating cash-flow matching stocks is the dividend
yield itself: high dividend yield stocks do not only imply higher out-of-sample dividend yields, but also
lower dividend yield uncertainty. The choice of the dividend yield as a selection criterion is further
justified by the results of Baker and Wurgler (2012), who find that a high dividend yield ratio implies
a higher bond beta, and by the findings of Leary and Michaely (2011), who show that firms with high
dividend yields smooth their dividend more so than their low dividend yield counterparts.

As a conclusion, we have isolated three main criteria which we expect to be discriminating for
the sorting of stocks with above average liability-friendliness: low volatility; high correlation with a
liability proxy (a bond index); and high dividend yield. We provide a thorough empirical test of the
impact of stock selection procedures according to these criteria in the next section, and explore the
implications in terms of improvement in investor welfare.

4 Constructing Equity Benchmarks with Improved Liability-Friendliness

We consider a broad investment universe of 500 stocks - those of the S&P 500, extracted from the
CRSP/Compustat database - over a period ranging from 1975 to 2012.

4.1 Empirical Methodology

In order to assess liability-friendliness, we will use a proxy which will mimic the returns of a risk-free
bond with constant maturity. We proceed as in Section 4.1 of Campbell et al. (2003), using series of US
Treasury constant maturity yields.14 In most of our applications, we take the maturity of the liability
proxy to be 15 years, which is the longest maturity for which data is available from 1975 onwards.
However, we shall also include robustness checks, in which we will evaluate liability-friendliness with
respect to proxies with both shorter and longer maturities. If we denote by y(ti, τ) the zero-coupon
yield of maturity τ observed at time ti, the return of a bond with constant maturity τ between dates
ti and ti+1 = ti + ∆t is computed as

rti,ti+1 = −(Dy(ti, τ)−∆t)y(ti+1, τ −∆t) +Dy(ti, τ)y(ti, τ),

where we use the approximation y(ti+1, τ −∆t) = y(ti+1, τ) and Dy(ti, τ) = 1−(1+y(ti,τ))−τ
1−(1+y(ti,τ))−1 .

At each annual rebalancing date (taken as the Friday that is closest to the 21st of March), we
select 100 stocks according to one of the relevant criteria determined in the previous section, that is
low volatility, high dividend yield and high correlation with liabilities. Volatility is measured as the
standard deviation of weekly returns of the stock over the past two years; correlation is measured as
the Pearson correlation of the weekly returns of the stocks with the weekly returns of the liability proxy
over the past two years; lastly, dividend yield is computed as the ratio between the total return index

14Available at http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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divided by the price return index, minus one (so that we have DYt−1,t = St+Dt−1,t
St

− 1 = Dt−1,t/St).
The total return index (numerator) is computed with the CRSP "Returns" item, while the price return
index is computed using the CRSP "Returns without dividends" item.

The portfolio is then composed of an EW combination of these stocks. We will subsequently assess
the impact of alternative weighting schemes, including the cap-weighting scheme, on the results. The
stocks are kept in the portfolio for one year and after this holding period, new weights are computed
and new positions are taken. The weights and returns of the portfolio are collected on a daily basis
so as to compute performance indicators over the whole period.

In order to quantify both the liability-friendliness and the performance of the portfolios, we will
compute the following indicators.

- Liability-friendliness indicators:

– The tracking error with respect to the liabilities, defined as the standard deviation of the
difference of the daily returns of the portfolio and those of the liabilities, multiplied by
√

252;

– The annualised volatility of the portfolio, computed as the standard deviation of the daily
returns of the portfolio, multiplied by

√
252;

– The correlation with respect to the liabilities, defined as the Pearson correlation between
the daily returns of the portfolio and those of the liabilities;

– The average annual dividend yield of the portfolio, computed as the average of out-of-
sample dividend yields. The time-t out-of-sample dividend yield of a firm is computed as
the dividends paid between date t− 1 and date t, divided by the time-t capitalisation. The
dividend yields are then averaged across stocks (depending on their respective weights) and
over the 38 years of the sample. This indicator measures the average amount of dividend
that was received by a shareholder who invested $100 in the portfolio at the beginning of
each year of the sample and held the portfolio for one year;

- Performance indicators:

– The annualised total return of the portfolio, computed as

(VtN /Vt1)252/N − 1,

where V is the value of the portfolio, tN is the last date of the sample and N is the number
of trading dates in the sample;

– The Sharpe ratio of the portfolio, defined as the ratio of the annualised excess return of the
portfolio (over the annualised risk-free rate) to the annualised volatility of the portfolio;
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– The annual turnover, computed as the sum of changes in positions at rebalancing dates,
divided by two:

Turnover = 1
2N

N∑
n=1

N∑
i=1
|witn − w

i
tn−|,

where witn is the target weight of the ith asset at rebalancing date tn, and witn− is its weight
just before the rebalancing.

These indicators are computed over the whole sample period. However, liability-driven investors
are particularly interested in the behaviour of their portfolio when interest rates decrease, leading
to an increase in liability values. Consequently, we have also computed the annualised returns and
correlation with liabilities of the portfolios conditionally on interest rate downturn periods identified
in the following way. We compute a 40-day moving average series of the 15-year US treasury constant
maturity yield. Based on this smoothed series, we search for periods which decrease for 40 days or
more. The annualised return and correlation with liabilities are then calculated over these periods.

4.2 Base Case Results

In line with the conclusions of the previous section, our base case study is focused on three portfolios,
each one consisting of an EW combination of one hundred stocks: the high dividend yield, the high
correlation and the low volatility portfolios. We compare these selections to the cap-weighted and
equally-weighted portfolio of all assets in the universe (the EW and CW benchmark). We expect the
selections to be more bond-like than this neutral benchmark and hence to display better indicators
in terms of liability-friendliness and cash-flow matching ability. To further confirm the relevance of
the selection criteria, we also perform the inverse selections, namely with a focus on low dividend
yield, low correlation and high volatility portfolio. If the criteria are drivers of liability-friendliness,
then these inverse selections should generate portfolios that are less bond-like than the neutral EW
benchmark. Lastly, we also consider random selections of 100 stocks performed at each rebalancing
date.

All indicators defined in the previous subsection are presented in Table 2. We start by looking
at the liability-friendliness in terms of both factor matching and cash-flow matching ability of the
selections, which is respectively assessed through the tracking error with the liability proxy (with
correlation and volatility as the two main drivers) and the average dividend yield. In order to ensure
that selections significantly improve the neutral benchmark taken to be the EW portfolio without
selection (to avoid any biases due to the cap-weighting scheme), we test for the significance of the
difference between any given indicator for the benchmark and the corresponding indicator for each
portfolio. The details of the tests are provided in the legend of the table. An indicator associated
with three stars can be considered as significantly different from that of the benchmark EW portfolio
at the 1% level.
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Selections
No Sel. No Sel. Random High High Low
(CW) (EW) Div Yield Correlation Volatility

Panel A: Liability friendliness indicators
Tracking Error (%) 18.8 19.0 19.4 (*) 17.9 (***) 17.4 (***) 14.6 (***)
Volatility (%) 17.3 17.3 17.7 (*) 16.2 (***) 16.2 (***) 13.0 (***)
Correlation (%) 1.46 (***) -0.80 -0.85 1.88 (***) 7.58 (***) 7.73 (***)
Cond. Corr. (%) -0.98 -0.60 -0.54 -1.07 -0.57 -1.18
Avg. Div. Yield (%) 3.18 2.94 2.90 5.85 3.70 4.59
Panel B: Performance indicators
Ann. Ret. (%) 10.9 13.3 13.0 13.8 14.6 13.2
Sharpe Ratio 0.42 (***) 0.55 0.53 0.62 (*) 0.68 (**) 0.73 (***)
Turnover (%) 4.4 12.2 158.6 23.3 48.9 27.5
Cond. Ann. Ret.(%) 5.5 6.4 7.0 8.8 8.2 9.6

Low Div Yield Low Correlation High Volatility
Panel C: Liability friendliness indicators of opposite selections
Tracking Error 22.6 (***) 22.1 (***) 27.8 (***)
Volatility (%) 21.0 (***) 20.1 (***) 26.1 (***)
Correlation (%) -1.8 (**) -7.5 (***) -6.7 (***)
Cond. Corr. (%) -0.34 -1.15 -0.26
Avg. Div. Yield (%) 0.51 2.50 1.38
Panel D: Performance indicators of opposite selections
Ann. Ret. (%) 11.3 12.4 10.7
Sharpe Ratio 0.36 (**) 0.43 (*) 0.27 (***)
Turnover (%) 27.5 55.1 34.2
Cond. Ann. Ret.(%) 3.3 5.1 1.8

Table 2: Out-of-sample indicators of selection-based portfolios. The investment universe is
the S&P 500 over the 1975-2012 period (Source: CRSP). We assess the significance of the difference
of each indicator with respect to that of the EW benchmark portfolio. The tests for the tracking
error and the volatility are performed following the HAC inference methodology detailed in Ledoit
and Wolf (2011). The test for the correlation is based on the results of Zou (2007) in the overlapping
case. Lastly, the test between the Sharpe ratios stems from the HAC procedure of Ledoit and Wolf
(2008). In all tests, the null hypothesis is that the indicator of the portfolio based on selections is
equal to that of the equally weighted portfolio of all stocks. The p-values are associated with stars in
the following way: zero star if the p-value is greater than 10%, one star (*) if the p-value lies between
5% and 10%, two stars (**) if the p-value is above 1% but below 5% and lastly, three stars (***) if
the p-value is smaller than 1%.

We first observe that the random selections generate results which are very close to the EW
benchmark and therefore do not improve it on any level. On the other hand, the three liability
friendly selections lead to lower tracking errors with respect to the liability proxy, compared to both
CW and EW benchmarks with no selection. This lower tracking error stems both from lower volatility
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and higher correlations with the liability proxy. Over the sample period for the S&P 500 universe,
the EW portfolio of the 20% of stocks with the lowest volatilities has a tracking error of 14.6% with
respect to our liability proxy while the EW portfolio of the 20% of stocks with the highest volatilities
is almost twice as large at 27.8%. At the same time, the focus on low volatility stocks generates a
positive 7.7% correlation with the liability proxy, while the focus on high volatility stocks generates
a negative correlation of -6.7%, which confirms that low volatility stocks, which tend to be the low
dividend uncertainty stocks, are the ones that tend to be the closest approximations to fixed-income
securities.

In fact, the low volatility portfolio is found to have a slightly higher out-of-sample correlation
with the liability proxy compared to the high correlation portfolio, as a consequence of the well-
documented instability of the stock-bond correlations which implies that past high correlations are
not necessarily the best forecasts of future high correlations. In other words, low volatility appears
to be a better predictor of future high stock-bond correlation compared to prior high stock-bond
correlation. However, there is not much discrepancy in terms of conditional correlation, as they all lie
between -1.2% and -0.5%. It should also be noted that the three liability friendly selections also imply
higher average dividend yields. The largest figure is associated, as expected, with the high dividend
yield selection (5.85%), but the low volatility selection immediately follows (4.59%).

Turning to performance indicators, we find that all selections surpass the CW benchmark in
terms of annualised returns and all selections, except the low volatility and random selections, also
outperform the EW benchmark (the low volatility selection is outranked by the EW benchmark by
0.1%). Furthermore, we find that the increase in Sharpe ratio compared to the EW benchmark is
statistically significant, especially for the low volatility selection (and, to a lesser extent, to the high
correlation selection). This finding suggests that the increase of liability-friendliness linked to these
criteria is not achieved at the cost of lower risk-adjusted performance, with a corresponding increase
in investor welfare which will measured in the next section.

In fact, if we compare the Sharpe ratio of the selections versus the Sharpe ratio of the inverse
selections, we find that increased liability-friendliness does not command a risk premium; on the
opposite, a positive risk premium is associated to low volatility, high correlation and high dividend
yield stocks, with a difference in Sharpe ratios between the upper and lower quintile selections related
to these criteria being strongly significant (the associated p-value in the HAC test is much smaller
than 0.1%). These findings are consistent with existing results, in particular results on the positive
risk premium associated with low volatility stocks (the so-called low volatility anomaly of Ang et al.
(2006, 2009)) and high dividend yield (see Rozeff (1984) and Chen et al. (1990)). Note that turnover
is of course the lowest for the CW benchmark because this portfolio is only affected by changes in
the composition of the universe. High dividend yield and low volatility selections generate moderate
turnovers ranging between 20% and 30%, which suggests that the time-variation in these attributes is
not too strong. On the other hand, the portfolio based on high correlations with the liabilities implies
significantly larger turnover, consistent with the fact that such estimated correlations are unstable
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over time.
One might wonder whether the competing selection procedures lead to a vastly disjointed subset

of stocks, or if the selected stocks tend to be somewhat similar for various selection criteria. To test
for this, we define the overlap between two selections by the number of stocks that belong to the two
selections, divided by the number of stocks in the selections. To ensure a higher degree of robustness,
we carry out this analysis for three different universe sizes, namely N=50, 100, 250 (i.e. 10%, 20%
and 50% of the total number of stocks). The results are gathered in Table 3.

Selections
High Div Yield High Correlation Low Volatility Random

Panel A: N=50
High Div Yield 100 24.5 42.1 13.1
High Correlation 24.5 100 26.2 9.3
Low Volatility 42.1 26.2 100 14.4
Random 13.1 9.3 14.4 100

Panel B: N=100
High Div Yield 100 31.3 46.0 20.4
High Correlation 31.3 100 34.2 16.2
Low Volatility 46.0 34.2 100 22.6
Random 20.4 16.2 22.6 100
Panel C: N=250
High Div Yield 100 53.9 68.0 55.2
High Correlation 53.9 100 59.4 49.4
Low Volatility 68.0 59.4 100 53.5
Random 55.2 49.4 53.5 100

Table 3: Average overlap between selections. The investment universe is the S&P 500 over the 1975-
2012 period (Source: CRSP). At each rebalancing date, we compute the overlap between two selections as the
number of stocks which belongs to the two selections, divided by the number of stocks in the selections. We
then average the overlaps over the whole sample.

Comparing Panels A, B and C, we observe that the average overlap is increasing in the number
of stocks within the portfolios, which is intuitive because in the limit N=500, the overlap can only
be 100%. The selections which are the closest in terms of percentage overlap are the dividend yield
and the low volatility selections. The high correlation displays lower levels of average overlap and
shares on average in the case N=100 between 30% and 35% of the stocks of the other selections. In
this (base) case, the average overlap is never larger than 50%, which means that the three attributes
do lead to different subsets of stocks. Lastly, the overlap of the random selections is close to the
percentage of stocks retained (from 10% for 50 stocks to 50 % for 250 stocks), which is a confirmation
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of the randomness of the picks.
In an attempt to check for the possible presence of sector biases in the selected portfolios, we

finally report in Table 4 the average sector weights for each selection procedure. The first striking
observation is that all three liability friendly selections are more tilted towards the Utilities sector,
compared to both CW and EW benchmarks. The selections compensate with smaller proportions of
Wholesale Trade and Business Equipment stocks. This is consistent with the results of Gupta (2012),
who finds that as of 2011, 92% of companies belonging to the Utilities sector are dividend payers
in the Dow Jones US 2500 universe. According to Gupta (2012), the sector which has the second
highest percentage of dividend payers is the financial sector, which is also overweighted compared to
the benchmarks by all selections, except the low volatility one.

Even though the three liability friendly selections share similar patterns, each of them has a specific
set of sector exposures. The low volatility selection allocates 40% of the portfolio to Consumer Non-
Durables and Utilities, while the high correlation selection assigns 40% to Utilities and Financials.
The high dividend yield selections are strongly tilted towards the same sectors, but in the reverse
order (nearly 29% for Utilities and 21% for the Finance sector).

Selections
No Sel. No Sel.

Random
High High Low

(CW) (EW) Div Yield Correlation Volatility

Consumer Non-Durables 8.5 10.2 10.5 8.3 10.7 15.9
Consumer Durables 5.4 3.8 3.8 3.6 2.2 2.5
Manufacturing 10.5 17.4 17.8 12.0 9.0 11.1
Energy 11.3 5.7 5.7 7.1 3.3 5.4
Chemicals 5.0 4.3 4.3 4.2 3.8 5.0
Business Equipment 13.3 10.6 10.6 1.9 5.0 3.4
Telecommunications 6.3 2.7 2.5 4.3 3.8 3.8
Utilities 4.7 7.1 6.8 28.7 16.5 24.3
Wholesale Trade 7.2 9.4 9.3 3.8 7.5 5.8
Healthcare 8.9 5.6 5.6 1.6 7.2 5.6
Finance 13.4 13.7 13.9 21.1 24.3 13.3
Other 5.6 9.6 9.4 3.5 6.6 3.9

Table 4: Average sector weights of the selection-based portfolios (%). The investment universe
is the S&P 500 over the 1975-2012 period (Source: CRSP). At each rebalancing date, the aggregate weight of
each sector is computed by summing the weights of all stocks within the sector. The weights are then averaged
across the rebalancing dates. The sectors are those defined by the 12 industry portfolios on Kenneth French’s
website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

Overall, we find that all stocks are not born equal in terms of liability-friendliness. We also find that
a selection on high dividend yield and/or low volatility levels tend to generate, for a reasonable level
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of turnover, a portfolio with significantly improved liability-robustness compared to the CW or EW
benchmarks based on the whole universe. A selection based on past correlation with a liability-proxy
on the other hand generates more turnover, which can be taken as an indication of some substantial
lack of stability on the procedure.

4.3 Robustness Checks

The results of the base case depend on various arbitrary choices (choice of the liability proxy, number
of stocks in the selections, weighting scheme, etc.). In this subsection, we test whether our results are
robust to changes in these dimensions.

4.3.1 Maturity of Liabilities

We first want to check whether our results one the improvements in out-of-sample tracking error and
correlation with the liability proxy are robust with respect to the choice of the duration of the liability
proxy. To this end, we repeat in Table 5 the analysis with a 1Y and 30Y constant maturity bond
indices. Because 30Y yields are only available from 1985 onwards, we restrict our analysis to the 1985-
2012 period in this subsection. Moreover, only the tracking error and correlation with liabilities are
impacted by this modification in the protocol, hence we do not provide the other unchanged indicators.

With respect to the tracking error, we again observe that all three liability friendly selections lead
to above average liability-friendliness compared to the EW benchmark (however, the random selection
adds no value). Among all portfolios, the low volatility selection is the one with the lowest tracking
error. These results are consistent across maturities. We also note that the tracking error is increasing
in the maturity of the liabilities; this is explained by the fact that the longer the maturity, the more
volatile the liability proxy, which everything else equal mechanically implies an increase in tracking
error.

The same conclusions hold for the correlations with the liability proxy: the three liability friendly
selections improve the benchmark and within the selections, the low volatility ranks first while the
high dividend yield ranks last, which confirms the finding of the base case over a longer period. These
results are again very favourable to the low volatility selection.

4.3.2 Inflation-Linked Liabilities

We now turn to the situation faced by a pension fund with inflation-linked liabilities. In this case, the
returns on the liability proxy are computed as follows:

rti,ti+1 = −(D(ti, τ)−∆t)z(ti+1, τ −∆t) +D(ti, τ)z(ti, τ) + log
(
ϕti+∆t
ϕti

)
,

where the z(ti, τ) are the time-ti zero-coupon yield of Treasury Inflation Protected Securities (TIPS)
with maturity τ and ϕt is the value of the Consumer Price Index published by the US Bureau of
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Liab. Maturity Selections
No Selection High Div Yield High Correlation Low Volatility Random

Panel A: Tracking Error (%)
1Y 19.2 18.5 (**) 17.8 (***) 14.5 (***) 19.8 (**)
15Y 21.1 20.2 (***) 19.2 (***) 16.2 (***) 21.6 (**)
30Y 24.9 24.0 (**) 23.0(***) 20.4 (***) 25.5 (**)
Panel B: Correlation (%)
1Y -12.9 -10.3 (***) -6.0 (***) -5.3 (***) -13.0
15Y -10.3 -6.4 (***) -0.7 (***) -0.2 (***) -10.4
30Y -13.7 -9.8 (***) -5.7 (***) -4.7 (***) -13.8

Table 5: Impact of liability maturity on statistical liability friendliness. The investment
universe is the S&P 500 over the 1985-2012 period (Source: CRSP). For this particular test of robustness,
the sample period is 10 years shorter because the data for the 30Y liability proxy is only available from 1985
onwards. Compared to the base case, the indicators are computed with respect to liability proxies with 1 year,
15 years (base case) or 30 years of maturity. The tests for the differences in tracking error and correlation are
performed as in the base case with respect to the EW benchmark.

Labor Statistics. In this case, Dz(ti, τ) = 1−(1+z(ti,τ))−τ
1−(1+z(ti,τ))−1 . The CPI time-series is only available at a

monthly frequency, so all returns will be computed on a monthly basis. Moreover, the TIPS data is
extracted from the US Federal Reserve website15 and starts in 1999, which reduced the sample size
to 1999-2012. In addition to the 15-year maturity base case, we also consider the smallest and largest
maturities for which the data is available over the same period (5-year and 20-year maturities).

As in the preceding subsection, we compute the tracking error and correlation of the portfolios
with respect to this new inflation-linked proxy and report the results in Table 6 (we do not provide
the other unchanged indicators). The low volatility selection remains the best approach for reducing
tracking error with respect to liabilities, followed by the high correlation selection (random selections,
if anything, deteriorate liability-friendliness). These conclusions are in line with the results of Table
5 and are not impacted by changes in the maturity of the liabilities. We again acknowledge that the
tracking error is an increasing function of the maturity of the liability proxies, essentially because their
volatility increases with the maturity. Moreover, the ranges of the values across maturities are smaller
in Table 6 because the range in maturities (5 years to 20 years is also smaller - compared to 1 year to
30 years in Table 5).

With respect to the correlation indicator, the improvement is meaningful for the high correlation
and low volatility selections (at least +3% in absolute values). The smallest maturity yields the
highest correlations, but also the smallest spreads between the portfolios. In this particular setting,
the correlation seems to be decreasing with the maturity of the liabilities, but this was not the case
in Table 5, so that no further general conclusion can be drawn.

15http://www.federalreserve.gov/pubs/feds/2008/200805/200805abs.html
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Liab. Maturity Selections
No Selection High Div Yield High Correlation Low Volatility Random

Panel A: Tracking Error (%)
5Y 19.6 19.6 16.2 (***) 12.9 (***) 20.5 (***)
15Y 21.3 21.0 18.0 (***) 14.8 (***) 22.1 (***)
20Y 22.4 22.0 (*) 19.1 (***) 16.0 (***) 23.2 (***)
Panel B: Correlation (%)
5Y 13.3 10.0 (***) 19.1 (***) 16.6 (***) 13.2
15Y 3.4 6.2 (***) 9.9 (***) 12.3 (***) 4.5 (***)
20Y 1.0 4.1 (***) 7.3 (**) 10.3 (***) 2.1 (**)

Table 6: Inflation-linked liabilities. The investment universe is the S&P 500 over the 1999-2012 period
(Source: CRSP). For this particular test of robustness, the sample period is only 14 years long because the
data for the TIPS yields is only available from 1999 onwards. Compared to the base case, the indicators are
computed with respect to liability proxies with 5 years, 15 years (base case) or 20 years of maturity. The tests
for the differences in tracking error and correlation are performed as in the base case with respect to the EW
benchmark.

4.3.3 Number of Stocks

In our base case protocol, we have set the number of stocks to be held in the portfolio to 100. In Table
7, we extend our results to the cases where we retain either 50 or 250 stocks. The sample period is
1975-2012.

The impact of the number of stocks on the tracking error is hardly noticeable on the dividend
yield selection (left column of Panel A). This can be explained by the conflict between two competing
effects. On the one hand, reducing the number of stocks generates selections which are more tilted
towards a liability-friendly factor (see Panel C, which solely focuses on correlation). On the other
hand, as N decreases, there is less room for diversification which results in more volatile portfolios
and hence higher tracking error. For the high correlation and low volatility selections, it seems that the
first effect dominates the second one because the tracking error in these two cases is indeed increasing
in the number of stocks in the portfolio. For the random selection, the second effects overrules the
first one. In fact, volatility (and mechanically Sharpe ratio) and tracking error are the only indicator
which are impacted by the number of stocks for the random selection. We further note that the lowest
tracking error is again achieved by the low volatility selection.

With respect the correlation indicator (Panel C), we confirm that the correlation decreases with
the number of stocks. This can only hold when the selection criteria are designed towards liability-
friendliness, which is the case for the three portfolios. We observe that for the 50 stock selections,
the high correlation selection has a higher out-of-sample correlation compared to the low volatility
selection.

Turning to the average dividend yield (Panel D), the impact of the number of stocks is strictly
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Nb Stocks Selections
High Div Yield High Correlation Low Volatility Random

Panel A: Tracking Error (%)
50 18.2 (**) 17.1 (***) 14.0 (***) 19.6 (**)
100 17.9 (***) 17.4 (***) 14.6 (***) 19.4 (*)
250 17.9 (***) 18.0 (***) 16.2 (***) 19.1
Panel B: Volatility (%)
50 16.7 (**) 16.1 (***) 12.5 (***) 17.9 (**)
100 16.2 (***) 16.2 (***) 13.0 (***) 17.7 (*)
250 16.1 (***) 16.5 (***) 14.6 (***) 17.4
Panel C: Correlation with liability proxy (%)
50 2.5 (***) 10.7 (***) 10.3 (***) -0.9
100 1.9 (***) 7.6 (***) 7.7 (***) -0.9
250 0.8 (***) 3.4 (***) 4.0 (***) -0.9
Panel D: Average Dividend Yield (%)
50 6.85 4.04 5.34 2.92
100 5.85 3.70 4.59 2.90
250 4.46 3.23 3.77 2.96
Panel E: Sharpe Ratio
50 0.58 0.67 (**) 0.72 (***) 0.48 (*)
100 0.62 0.68 (**) 0.73 (***) 0.53
250 0.65 (*) 0.61 (*) 0.67 (**) 0.54
Panel F: Turnover (%)
50 25.2 55.8 31.7 175.5
100 23.3 48.9 27.5 158.6
250 16.0 33.5 19.2 26.3

Table 7: Impact of the number of stocks. The investment universe is the S&P 500 over the 1975-2012
period (Source: CRSP). Compared to the base case, we study the impact of the number of stocks which are
selected in the composition of the portfolio. In addition to our initial choice (N=100), we test a stricter selection
(N=50, one tenth of the global universe) and a looser one (N=250, one half of all of the stocks). The indicators
are computed exactly as in the base case. The tests for the differences in variance, tracking error, correlation
and Sharpe ratio are performed with respect to the EW benchmark.

monotonous for the all selections and the dividend yield decreases with N . From N=50 to N=250,
the loss in dividend yield is at least equal to 0.75% and can reach 2.4% for the high dividend yield
selections.

In light of these results, it is tempting to make a case for selecting a relatively small number of
stocks, which implies enhanced liability-friendliness (smaller selections are more pure in their respec-
tive tilts) and higher dividend yields. However, as mentioned before, they also leave less room for
diversification which may result in poorer performance. The corresponding results in terms of Sharpe
ratios and turnover are shown in Panel E and Panel F respectively. We note that there is no clear
monotonous impact of the number of asset on the Sharpe ratio. This can again be explained by the
combination of two opposed effects: large selections improve the diversification potential, but they
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also lead to a lower of exposure to possibly rewarded risk factors. In the case of the high dividend yield
selection, the Sharpe ratio is slightly increasing, implying that the first effect should be dominant.
For all of the tested selections, the Sharpe ratio of the portfolios consisting in 50 stocks is never the
maximum Sharpe ratio suggesting that selecting too few stocks is hardly optimal.

The highest Sharpe ratios are obtained for N=250 for the dividend yield selection and for N=100
for the selections based on statistical criteria. Moreover, in all cases, the turnover is a strictly decreasing
function of the number of stocks. Consequently, larger selections are expected to lead to smaller
transaction costs. Thus, taking into consideration risk-adjusted performance as well as portfolio
rotation does not incite a reduction in the number of stocks from 100 to 50. But increasing N
from 100 to 250 deteriorates the liability-friendliness of the selections because it implies higher levels
of tracking error. Accordingly, fixing N=100 appears to be a balanced choice between enhanced
liability-friendliness and attractive risk-adjusted performance with moderate turnover.

4.3.4 Sample Period

Our sample covers many different market conditions. In order to test the robustness of the results with
respect to various sample periods and macroeconomic situations, we split our sample into four periods
(three decades and one 8-year window) and perform the selection procedures on these subsamples.
We provide the indicators related to liability-friendliness in Table 8, Panel A-D.

The liability friendly selection-based portfolios lead to lower tracking errors and volatilities than the
EW benchmark over all periods, apart for the high dividend yield selection in 2005-2012. Apart from
the turnover, the random selection is only slightly outperformed by the EW benchmark. Similarly to
the base case, the low volatility selection remains the most effective in reducing the tracking error and
the volatility over each subsample. With respect to correlations (Panel C), the three portfolios display
improvements over the EW benchmark, regardless of the timeframe used to compute the indicator.
We note that for some subsamples, the highest correlation is obtained for the high dividend yield
selection, which is different from what was obtained in the base case.

With respect to Sharpe ratios, the values are highly unstable within the periods, but the rankings
between portfolios are almost constant through time, with the no-selection EW benchmark ranking
last apart for one exception and the low volatility stocks ranking first or second but close to the first.
The same ranking stability is observed in terms of turnover, with the lowest turnover achieved by the
EW benchmark, followed by the high dividend yield selection and the low volatility selection.

We also note that the historical trajectory for dividend yields is overall decreasing over the sample
under consideration. The post-1990 levels are roughly equivalent to half of those before 1980. The
rankings of the selections are not impacted by the choice of the sample period, with the higher average
dividend yield levels obtained by the high dividend yield portfolios followed by the low volatility
selections. Among the selection-based portfolios, the high correlation stocks are those which yield the
lowest average dividend yields, but they are nonetheless above those of the EW benchmark, which
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Selections
No Sel. (EW) High Div. Yield High Correlation Low Volatility Random

Panel A: Tracking Error (%)
OVERALL 19.0 17.9 17.4 14.6 19.4
1975-1984 12.8 10.4 12.2 9.8 13.0
1985-1994 14.6 12.9 13.8 12.2 15.0
1995-2004 18.6 16.3 17.5 14.7 19.0
2005-2012 29.2 29.3 25.9 21.4 30.0
Panel B: Volatility (%)
OVERALL 17.3 16.2 16.2 13.0 17.7
1975-1984 12.8 10.0 12.3 9.1 12.7
1985-1994 15.5 13.9 15.3 13.3 15.3
1995-2004 16.8 14.7 16.4 13.2 17.2
2005-2012 24.1 25.2 21.6 16.9 25.6
Panel C: Correlations with Liabilities (%)
OVERALL -0.8 1.9 7.6 7.7 -0.9
1975-1984 31.2 36.2 34.7 36.1 30.7
1985-1994 34.6 38.7 43.4 41.6 34.2
1995-2004 -8.6 -1.9 3.3 1.4 -8.3
2005-2012 -41.7 -35.1 -36.6 -36.1 -40.0
Panel D: Average Dividend Yield (%)
OVERALL 2.94 5.85 3.7 4.59 2.90
1975-1984 4.70 8.29 5.83 7.06 4.70
1985-1994 3.01 5.91 3.84 4.67 2.91
1995-2004 1.83 4.29 2.52 3.13 1.79
2005-2012 1.92 4.46 2.16 3.00 1.92
Panel E: Sharpe Ratio
OVERALL 0.55 0.62 0.68 0.73 0.53
1975-1984 1.13 1.65 1.14 1.64 1.12
1985-1994 0.73 0.81 0.77 0.85 0.74
1995-2004 0.70 0.81 1.06 0.85 0.72
2005-2012 0.23 0.22 0.24 0.33 0.19
Panel F: Turnover (%)
OVERALL 12.2 23.3 48.9 27.0 158.6
1975-1984 11.5 25.0 55.3 27.5 157.3
1985-1994 10.9 23.4 46.2 28.5 160.1
1995-2004 14.2 23.4 44.1 30.5 155.6
2005-2012 11.8 23.6 54.8 24.6 154.9

Table 8: Robustness over different timeframes. The investment universe is the S&P 500 over the
1975-2012 period (Source: CRSP). Compared to the base case, we divide the whole sample into four subsamples
(three decades and an eight-year period). The indicators are then computed with respect to these subsamples,
using the same methodology as in the base case.
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confirms that all selections tend to improve the capacity to deliver large dividend streams per dollar
invested.

4.3.5 Alternative Selection Criteria

In this subsection, we perform selections based on alternative criteria different from those found to
be as economically motivated in previous research (see Section 3). These criteria are the standard
observable book-to-market and size attributes, as well as empirical beta and duration measures. We
also test the debt-to-equity ratio, in an attempt to see whether there is any relationship between a
higher leverage and a higher sensitivity to changes in interest rates, which would lead to a higher
liability-friendliness. For the sake of completeness, we look at the two extreme selections, that is we
test both the lowest and highest values for the attributes. We also provide the figures of the EW
benchmark and those of the extreme selections based on volatility for comparison purposes. The
results are gathered in Table 9.

We first observe that among all proposed selections, none outperforms the low volatility stock
selection across all indicators of liability-friendliness. The reverse statement holds for high volatility
stocks since they have the largest tracking error and volatility and the lowest correlation and average
dividend yield with respect to any other selection, re-enforcing the finding that the low volatility
selection is the lost relevant discriminating attribute for the purpose of mimicking a bond-like portfolio
among all tested selections.

Among the proposed alternatives, the low beta selection has the lowest tracking errors and the
highest correlation with liabilities, as well as the highest average dividend yield. High beta stocks
display the opposite features. This shows that the intuition conveyed by the CAPM (detailed in
Section 3) is verified empirically: low beta stocks are more liability-friendly than high beta stocks.
The fact that the book-to-market ratio does not strongly discriminate for liability-friendliness is a
confirmation of the findings of Baker and Wurgler (2012).

The leverage ratio is an intuitive criterion because firms which have a higher ratio are expected to
be more sensitive to variations is the interest rates.16 However, we find that even though high leverage
stocks are indeed more bond-like than their low leverage counterparts, the differences in liability-
friendliness and cash-flow matching capability (first four columns) is much less pronounced than for
selections based on beta for instance. The same conclusions hold for selections based on size: large
firms are more liability-friendly than small firms, but the differences in liability-friendliness indicators
between the two selections is comparable to the differences between selections based on leverage, and
not as large as those obtained for selections driven by beta or by volatility. Similarly, our results
show that high empirical duration selections lead to portfolios that are more liability-friendly than
low empirical duration selections for all indicators (tracking error, correlation with liabilities, average

16Bello et al. (2014) show that high or low levels of leverage can lead to a shift in risk from short horizon to long
horizon dividend flows, which can impact the liability-friendliness of stocks.
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Selections Out-of-sample indicators
Track. Error (%) Vol. (%) Correl. (%) Avg. DY (%) Sharpe Ratio Turn. (%)

No Selection 19.0 17.3 -0.8 2.94 0.55 12.2
Low Volatility 14.6 (***) 13.0 (***) 7.7 (***) 4.59 0.73 (***) 27.5
High Volatility 27.8 (***) 26.1 (***) -6.7 (***) 1.38 0.27 (***) 39.2
Low Debt/Cap 21.1 (***) 19.4 (***) -3.2 (**) 2.12 0.47 35.8
High Debt/Cap 20.1 (***) 18.5 (***) 1.1 (*) 3.65 0.48 33.0
Low Cap 21.7 (***) 19.8 (***) -5.4 (***) 2.46 0.59 30.5
High Cap 19.1 17.6 (*) 2.5 (***) 3.10 0.40 (*) 17.0
Low B/M 19.7 (**) 18.2 (***) 1.4 (*) 2.04 0.26 (***) 32.1
High B/M 20.2 (***) 18.4 (***) -2.1 (*) 3.42 0.81 (***) 45.8
Low Beta 15.3 (***) 13.6 (***) 5.0 (***) 4.07 0.71 (***) 29.4
High Beta 27.2 (***) 25.6 (***) -4.6 (***) 2.11 0.27 (***) 35.8
Low Duration 22.5 (***) 20.7 (***) -5.7 (***) 2.16 0.39 (*) 50.7
High Duration 19.6 (**) 18.1 (***) 3.7 (***) 4.04 0.53 39.4
High SemiDev 26.7(***) 24.9(***) -6.54 (***) 1.67 0.30 (***) 41.0
Low SemiDev 15.0(***) 13.5(***) 7.36 (***) 4.30 0.72 (***) 35.7
High VaR 27.7(***) 25.9(***) -7.01 (***) 1.54 0.28 (***) 39.8
Low VaR 14.6(***) 13.1(***) 8.00 (***) 4.41 0.76 (***) 34.4

Table 9: Alternative selection criteria. The investment universe is the S&P 500 over the 1975-
2012 period (source: CRSP). The Debt/Cap ratio is computed as the sum of Compustat item "Long-
Term Debt - Total" plus Compustat item "Short-Term Debt - Total" divided by Compustat item
"Capitalization". The latter Compustat item is used to perform the high capitalization selections and
the book-to-market sorts as well, the numerator being the Compustat item "Common/Ordinary Equity
- Total". The beta is computed as in the CAPM model, where the market factor is the CW benchmark.
The regressions are run on weekly returns over 2 years (104 sample points). Moreover, for stability
purposes and in order to reduce turnover, we shrink the raw betas towards their sector counterparts,
using the method of Vasicek (1973). The durations are evaluated in a similar two-step procedure:
their raw value is computed using the regression method of Reilly et al. (2007) with the same data
specifications as the beta regressions; then, they are shrunk towards their sector counterparts. The
sector factors are the equally-weighted portfolios of all stocks within the sectors. The VaR selection is
performed using the 5% quantile of the past 104 weekly returns and the semi deviation is computed as
the standard deviation of negative returns among the 104 past returns. We include the low and high
volatility selections for comparison purposes. As in Table 2, we display the significance of the difference
of indicators with respect to the EW benchmark (first row) using the classical star representation.

dividend yield). However, this criterion does not appear to be as relevant as volatility or beta because
the impact of the selection is not as substantial.

In further robustness checks, we have included the Value-at-Risk and the semi-deviation, which
are alternative risk measures. The corresponding figures are close to those of the volatility, which can
be explained by the fact that the average overlap between the selections is 73% for the semi-deviation
and 76% for the VaR. Lastly, in unreported results, we have tested a low tracking error selection. The
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figures are hardly distinguishable from those of the low volatility selection, which can be explained by
the fact that the correlations are small in absolute value (less than 10%), which leads to an average
overlap of 92%.

Overall, these results confirm volatility as the preferred selection criterion. The other base case
criteria all perform better than the alternative ones for the indicator that they were intended to opti-
mise: the high correlation displays higher correlations and the high dividend yield selection generates
larger average dividend yields, compared to all of the alternatives of Table 9.

Turning to Sharpe ratios, the highest value (0.81) is obtained by the high book-to-market stocks,
which is consistent with the well documented risk premium of value stocks (Fama and French (1992)).
The low volatility selection ranks second and the high volatility selection ranks second-to-last, thereby
yielding the second spread between extreme quintiles of firm attributes (0.46 difference in Sharpe ratio,
versus 0.55 difference for selections based on book-to-market).

With respect to turnover, the EW benchmark generates the smallest levels of rotations, followed
by the high capitalisation stocks, with size rankings being more stable in the cross-section compared
to raking based on other attributes. The largest turnovers stem from duration based selections.

4.3.6 Alternative Weighting Schemes

In results reported so far, all portfolios were equally weighted. Even though the EW benchmark
typically enjoys high risk-adjusted performance (see DeMiguel et al. (2009)), one may wonder whether
other weighting schemes may improve liability-friendliness, or risk-adjusted performance, or both. To
this end, we consider the following four weighting schemes:

1. The capitalisation-weighted (CW) portfolio, where the weight of each stock is proportional to
its market capitalisation;

2. The equally-weighted (EW) portfolio (base case), where all stocks have the same weight;

3. The inverse volatility (IV) portfolio, where the weight of each stock is proportional to the inverse
of its volatility (computed as the standard deviation of its past weekly returns over the past two
years);17

4. The minimum variance with weight constraints (MV-C) portfolio: it is computed as the solution
17If we assume that all pairwise correlations are equal, the inverse volatility weighted portfolio is identical to the equal

risk contribution portfolio (Maillard et al. (2010)).
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of the following optimisation problem:

min
w
w′Σw

s.t. w
′1 = 1
1

3N ≤ wi ≤
3
N
,

which amounts to minimise the ex-ante variance of the portfolio, subject to the budget constraint
(the weights sum to one) and to upper and lower bounds on the weights. The role of these weight
constraints is to prevent the optimisation to allocate strictly positive weights to only a very small
proportion of the initial universe (as is documented in Clarke et al. (2011)). Because the selection
was performed at an earlier stage, we do not want the weighting scheme to further restrict the
investable set since it would indeed reduce the diversification potential of the portfolios.

The covariance matrix Σ is estimated using an implicit factor model with a number of factors
determined by a criterion stemming from Random Matrix Theory (see Laloux et al. (2000) for further
details).

The results reported in Table 10 show that the IV and MV-C weighting schemes lead to further
improvements in terms of tracking error and volatility compared to the EW and CW benchmarks.
We observe however, that the improvement in terms of correlation is only true in comparison to the
EW portfolio. In fact, for high correlation selections, the highest correlation is reached by the CW
benchmark (8.9%). For the other selections, it is attained by the MV-C weighting scheme.

Turning to average dividend yields, the IV and MV-C again outperform their CW and EW coun-
terparts over all selections and the MV-C portfolios rank first in all cases.

This can be explained by the fact that these schemes allocate more weight to stocks with low
volatilities, which have, as was shown in the previous section, larger dividend yields on average. The
rankings in terms of Sharpe ratio are invariant with respect to the selection criterion: the MV-C rank
first, the IV second and the EW third. The high risk-adjusted performance of the MV-C portfolio
nevertheless comes at the cost of higher turnover (at least a 10% to 20% increase in absolute value,
depending on the selections), compared to other weighting schemes. The EW and IV portfolios have
similar levels of turnover. Lastly, we notice that for some indicators, such as volatility, average dividend
yield, or Sharpe ratio, the improvement from equal weights to MV-C weights is limited for the low
volatility selections, compared to the other selections. This is because the selection step has already
tilted the portfolio towards low risk stocks, and therefore, the additional minimum variance layer does
not add much value in this case.

The findings of Table 10 can be summarised as follows. The IV and MV-C weighting schemes
improve the tracking error, the average dividend yield and the Sharpe ratio. The improvement is
more spectacular for the MV-C portfolios, but it comes at the price of higher turnover.
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Selections Weighting Schemes Selections Weighting Schemes
CW EW IV MV-C CW EW IV MV-C

Panel A: Tracking error (%) Panel D: Average Dividend Yield (%)
No Selection 18.8 19.0 17.8 16.1 No Selection 3.18 2.94 3.29 3.66

(***) (***)
High Div Yield 18.0 17.9 16.8 15.6 High Div Yield 5.79 5.85 6.01 6.07

(***) (***) (***) (***)
High Correlation 17.6 17.4 16.8 15.7 High Correlation 3.81 3.70 4.08 4.53

(***) (***) (***) (***)
Low Volatility 15.6 14.6 14.5 14.1 Low Volatility 4.24 4.59 4.71 4.80

(***) (***) (***) (***)
Random 19.4 19.4 19.0 18.6 Random 3.09 2.90 3.23 3.61

(*) (*) (**) (***)
Panel B: Volatility (%) Panel E: Sharpe ratio
No Selection 17.3 17.3 16.1 14.3 No Selection 0.42 0.55 0.60 0.69

(***) (***) (***) (*) (***)
High Div Yield 16.5 16.2 15.2 14.0 High Div Yield 0.56 0.62 0.65 0.70

(***) (***) (***) (***) (*) (**) (***)
High Correlation 16.4 16.2 15.5 14.4 High Correlation 0.58 0.68 0.69 0.73

(***) (***) (***) (***) (**) (**) (***)
Low Volatility 14.2 13.0 12.9 12.5 Low Volatility 0.60 0.73 0.73 0.74

(***) (***) (***) (***) (*) (***) (***) (***)
Random 17.8 17.7 17.3 16.9 Random 0.47 0.53 0.55 0.60

(**) (**) (**) (*) (*)
Panel C: Correlation (%) Panel F:Turnover (%)
No Selection 1.5 -0.8 1.1 3.5 No Selection 4.4 12.2 13.0 30.8

(***) (***) (***)
High Div Yield 3.2 1.9 3.8 5.5 High Div Yield 26.0 23.3 22.8 43.5

(***) (***) (***) (***)
High Correlation 8.9 7.6 8.5 8.6 High Correlation 60.5 48.9 50.6 71.5

(***) (***) (***) (***)
Low Volatility 7.9 7.7 8.3 9.3 Low Volatility 31.9 27.5 27.8 51.9

(***) (***) (***) (***)
Random -0.2 -0.9 -0.3 -0.5 Random 166.7 158.6 160.2 167.2

(*)

Table 10: Added value of weighting schemes. The investment universe is the S&P 500 over the
1975-2012 period (Source: CRSP). The procedure is the same as in the base case. At each rebalancing date,
in addition to the equally-weighted average of all stocks, we consider the weighting schemes defined in Section
4.3.6 (namely, CW, IV, MV-C). These weighting schemes are applied after the selection step.

4.3.7 Double Sorts

Given that low volatility selections appears to dominate in terms of factor matching properties, while
high dividend yield selection appear to dominate in terms of cash-flow matching properties, it is
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tempting to test whether a combination of these two selection criteria may lead to an even better
outcome on both dimensions. For the sake of completeness we also test a selection criterion based on
correlation and consider a large number of possible ways to combine the criteria. As there is theoretical
and empirical evidence that volatility is a strong driver of liability-friendliness, we will perform sorts
which all involve the volatility attribute. This is also motivated by the fact that selecting low risk
stocks does not deteriorate the performance of the portfolios. In order to remain coherent with the
base case framework, we aim to select 100 stocks. There are many arbitrary ways to proceed, but we
focus on two of them: either we start by selecting, or we start by eliminating. If we start by selecting,
then we retain only 200 stocks in the first selection, but if we start by eliminating, we retain 400 stocks.
In the first case, we tilt the portfolio towards the criterion, but in the second, we disqualify stocks
which have an abnormally low (or high) characteristic, while keeping a sufficiently large universe for
the second selection criterion to be more decisive. The results are collected in Table 11.

Selections Out-of-sample indicators
Tracking Volatility Correlation Avg. DY Annualised Sharpe Turnover
Error (%) (%) (%) (%) Return (%) ratio (%)

No Sel. (EW) 19.0 17.3 -0.8 2.94 13.3 0.55 12.2
VOL200-DY100 15.2 (***) 13.7 (***) 6.6 (***) 5.45 13.7 0.73 (***) 23.5
VOL400-DY100 16.7(***) 15.1 (***) 3.3 (***) 5.83 13.8 0.67 (**) 22.8
VOL200-COR100 15.2 (***) 13.9 (***) 9.6 (***) 4.24 13.8 0.72 (***) 41.7
VOL400-COR100 16.5 (***) 15.2 (***) 8.8 (***) 3.86 14.6 0.72 (***) 47.5
COR200-VOL100 15.4 (***) 14.0 (***) 9.0 (***) 4.22 13.5 0.70 (***) 41.8
COR400-VOL100 14.6 (***) 13.2 (***) 8.5 (***) 4.53 13.3 0.73 (***) 31.5
DY200-VOL100 15.0 (***) 13.5 (***) 6.9 (***) 5.25 13.6 0.74 (***) 24.9
DY400-VOL100 14.6 (***) 13.1 (***) 7.8 (***) 4.66 13.0 0.71 (***) 27.0

Table 11: Double sorts. The investment universe is the S&P 500 over the 1975-2012 period (Source:
CRSP). At each rebalancing date, we proceed to a double sorting of the stocks. For instance, of the
first row of the table, we start by selecting the 200 stock which have the lowest volatility. Then, among
these 200 stocks, we pick those which have the highest dividend yield. The abbreviations stand for:
VOL=low volatility, DY=high dividend yield, COR=high correlation with the liabilities.

From the numbers in Table 11, it is hard to find a particular portfolio which outperforms the
others across most indicators. For instance, the four selections which involve the correlation criterion
do have larger out-of-sample correlations with the liabilities, but their volatilities, tracking errors and
average dividend yield are not as competitive. Likewise, the first two selections of the table have the
largest average dividend yields, but those are mitigated by higher volatilities and tracking errors, as
well as lower correlations with liabilities.

The lowest volatilities (13.1% and 13.2%) are reached by the two selections which start by elimi-
nating (i.e. retain 400 stocks) and then sorting according to volatility. This allows for the volatility
criterion to be decisive, which is not the case for the other double sorts. This observation does not
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hold for the correlation indicator because as noted earlier on, the volatility attribute is as good a
predictor of future correlation as the correlation attribute. Consequently, the highest correlations are
obtained when combining the correlation and the volatility criteria. Likewise, the highest average
dividend yields stem from selections involving the dividend yield and the volatility. We however note
that the pure dividend yield selection reached a level of 5.85% of divided yield and is therefore not
outperformed by double sorts. The Sharpe ratios are not significantly different (testing the highest
minus the lowest yields a HAC p-value above 15%) as they range between 0.67 and 0.74. Lastly,
the reported turnovers confirm those from Panel F of Table 10: selections based on correlation imply
higher asset rotations, while the lowest ones are obtained by combining volatility and dividend yield
criteria.

Overall, the best selections are those which have balanced performances and combine competitive
liability-friendliness, increased cash-flow matching abilities and possibly high risk-adjusted perfor-
mance. Among the eight portfolios proposed in this subsection, the DY200-VOL100 displays such
qualities. Its volatility and tracking error are low and its average dividend yield and annual return
are among the highest. As such, it is among the most bond-like portfolios of all we have tested while
keeping reasonably high levels of returns. This is in fact not surprising if we recall the decomposition
of the variance of total returns:

V (Rt,t+1) = V

(
St+1
St

)
+ V

(
Dt,t+1
St

)
+ 2Cov

(
St+1
St

,
Dt,t+1
St

)
.

When we compute the realised volatility, we use weekly returns and dividend cash-flows are blended
in these returns, which means that the focus is essentially set on the first term (which makes sense
because it is by far the largest one). The first dividend yield selection allows us to first consider the
second term (high dividend yield portfolios are associated with lower variance in dividend growth) by
eliminating the stocks with low cash-flow matching ability. Therefore, combining the features is a way
to reduce the variance of total returns in two steps by focusing on different terms of the decomposition
of the total variance. It is also a method that provides both enhanced liability-friendliness (low tracking
error) and increased cash-flow matching capability (high average dividend yield) while maintaining a
competitive risk-adjusted performance.

Consequently, the DY200-VOL100 selection appears as an attractive equity benchmark in the con-
text of an LDI strategy. Moreover, if we combine this selection with the minimum-variance weighting
scheme with box constraints (MV-C), then the liability-friendliness is further improved, and the in-
dicators reach the following attractive levels: 14.1% of tracking error, 12.5% of volatility, 8.2% of
correlation and 5.4% of average dividend yield. Overall, double sorts starting with DY and then low
volatility generate comparable levels of factor matching liability-friendliness with improved cash-flow
matching (average DY) properties compared to selection purely based on volatility. The Sharpe ratio
increases to 0.79, but the turnover also rises to 46.0%. This is another illustration of how diversification
through portfolio optimisation can further improve both the liability-friendliness and the risk-adjusted
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performance of a portfolio. Moreover, if we look at the tracking error with respect to inflation-linked
liabilities (15-year maturities), it decreases to 14.6%, which is significantly lower than the 21.3% of
the EW benchmark. Accordingly, this particular portfolio seems very attractive in an asset-liability
management context.

4.4 Assessing the Benefits of Liability-Friendly Equity Benchmarks in LDI Strate-
gies

We have proposed a methodology suited for building equity portfolios which exhibit a higher degree
of liability-friendliness compared to standard stock indices, and we now would like to measure the
resulting improvement in investor welfare. As explained in the introduction, the intuition is that
liability-driven investors may be able to invest a higher portion of their portfolios in equities when
using a more liability-friendly benchmark for the same ALM risk budget, which can be measured in
terms of funding ratio volatility, which a risk-averse liability-driven investor would want to minimise.
If the equity benchmark with improved liability-friendliness also happens to dominate the CW index
in terms of performance, then the investor will enjoy the joint benefit of having more dollars invested
in equity for the same risk budget, as well as a better reward earned for each dollar invested. On
the other hand, if the equity benchmark with improved liability-friendliness is dominated by the CW
index in terms of performance, then the trade-off between higher liability-hedging benefits and lower
performance will result in a net welfare gain or loss depending on parameter values.

All welfare gains will be reported with respect to the CW S&P 500 index, which is the default
choice for most investors. Among all of the possible alternative equity benchmarks discussed so far, we
focus on the following five strategies: (i) the constrained minimum variance portfolio of all stocks; (ii)
the EW portfolio of the low volatility stocks; (iii) the constrained minimum variance portfolio of low
volatility stocks; (iv) the EW portfolio of the previously discussed DY200-VOL100 double sort; and
(v) the constrained minimum variance portfolio of the DY200-VOL100 selection. These five choices
can be categorised depending on the sources of improvement in liability-friendliness. For (i), the
improvement comes from the weighting scheme because no selection is performed. For (ii) and (iv),
the enhancement stems from the selection, but not from the weighting scheme, which is not designed
to improve liability-friendliness, even though it may contribute to superior risk-adjusted performance.
Lastly, for (iii) and (v), both the selection and the weighting scheme will contribute to improving the
liability-friendliness. Risk and performance indicators for the six portfolios under consideration in this
section are summarised in Table 12.

We note that all proposed portfolios significantly improve the CW benchmark over all indicators
except of course turnover. In this context, we expect that a switch from the S&P 500 index to an
improved benchmark will unambiguously lead to welfare gains for a liability-driven investor. Focusing
first on improvements in risk-adjusted performance, and excluding the MV-C portfolio of all assets, for
which no selection has been performed, we find that all Sharpe ratios lie between 0.73 and 0.79, versus
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Portfolios Out-of-sample indicators
Tracking Volatility Corr. Avg. DY Ann. Sharpe Turnover
Error (%) (%) (%) (%) Return(%) Ratio (%)

All / CW (S&P 500) 18.8 17.3 1.5 3.18 10.9 0.42 4.4
All / MV-C 16.1 (***) 14.3 (***) 2.4 (*) 3.66 13.5 0.69 (***) 30.8
Low Vol/ EW 14.6 (***) 13.0 (***) 7.7 (***) 4.59 13.2 0.73 (***) 27.5
Low Vol / MV-C 14.1(***) 12.5 (***) 8.0 (***) 4.80 13.0 0.74 (***) 51.9
DY200-VOL100 / EW 15.0 (***) 13.5 (***) 6.9 (***) 5.25 13.6 0.74 (***) 24.9
DY200-VOL100 / MV-C 14.1 (***) 12.5 (***) 8.2 (***) 5.40 13.6 0.79 (***) 46.0

Table 12: CW versus liability-friendly portfolios. The investment universe is the S&P 500 over
the 1975-2012 period (Source: CRSP). The procedure is the same as in the base case. In the names of the
portfolios, the selection is separated from the weighting scheme by a slash. The tests for the tracking error and
the volatility are performed following the HAC inference methodology detailed in Ledoit and Wolf (2011) . The
test for the correlation is based on the results of in Zou (2007) the overlapping case. Lastly, the test between
the Sharpe ratios stems from the HAC procedure of Ledoit and Wolf (2008). In all tests, the null hypothesis
is that the indicator of the alternative portfolio is equal to that of the S&P500. The p-values are represented
using the usual star representation.

0.42 for the S&P 500 index. Regarding enhancement in hedging benefits, we also find that substantial
improvements are obtained, regardless of the indicator used to measure liability-friendliness (tracking
error, volatility, correlation, or average dividend yield).

Overall, the MV-C of all assets appears to be the least liability-friendly amongst the alternative
equity benchmarks since it leads to the highest tracking error and volatility, and the lowest correlation
and average dividend yield, a result that confirm the usefulness of the selection step. On the other
hand, the DY200-VOL100/MV-C portfolio, which appears as the most liability-friendly portfolio,
combines the benefits of both relevant stock selection and weighting procedures.

We now turn to the analysis of indifference curves (Figure 3), which represent in the (return of
the funding ratio, tracking error) parameter space the set of parameter values for which the investor
welfare remains constant.

Compared to the CW benchmark, all proposed portfolios achieve a positive improvement in LUG
leading to a minimum 1% welfare gain. The smallest gain (1.45%) is obtained by the MV-C portfolio
of all stocks and the largest gain (1.88%) is achieved with the double sort procedure associated with
the MV-C weighting scheme. This portfolio has the same tracking error as the low-volatility MV-C
portfolio but a higher annualised return. Conversely, it has approximately the same annualised return
as the MV-C portfolio of all stocks (up to a 0.1% difference), but a much smaller tracking error (2%
difference in absolute value).

To provide an easier way to interpret the measure of welfare gain, we now compute the gain in
expected log funding ratios of the aggregate LDI strategy, defined in Proposition 2.4. Because the
expression involves the unobservable (and investor-dependent) risk-aversion parameter γ, we adjust
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Figure 3: Indifference curves. This figure shows the increase in LUG as a function of the tracking
error and the annualized return of the funding ratio as defined in Proposition 2.5. The allocation in
the CW benchmark is equal to 40%. The white lines indicate the points where the increase is exactly
equal to ±1%, ±2%, etc. The reference portfolio is the CW benchmark (which by definition has a 0%
∆LUG). The portfolios with increased liability-friendliness are represented as small coloured circles.

the allocation to equities in the case of the improved benchmark consider so as generate the exact
same funding ratio volatility as when investing a given fraction of the portfolio to equities when using
S&P 500 index as a benchmark, as explained in Section 2. Because the S&P 500 index has a tracking
error with respect to the liability proxy which is higher than the tracking error achieved with the
selected portfolios, investors may allocate a higher proportion of their portfolios to equities in order
to match the variance of the funding ratio when the equity benchmark is improved (the proportion
is given by the ratio of tracking errors, as discussed in Section 2). We report the results in Figure 4,
where we observe that the steepest slope is associated to the double sort combined with the MV-C
weighting scheme. The MV-C portfolio of all stocks leads to the smallest increase in funding ratio
expected return because it is penalised by its comparatively larger tracking error, which is at least 1%
higher in absolute value compared to the other improved portfolios. Overall, we find that for a 40%
equity allocation, the gain in annual excess return reaches a minimum of 1.45% compared to the S&P
500 benchmark (the crossing points at the 40% level correspond to the dots in Figure 4).

In Figure 5, we also plot the historical evolution of the funding ratio over the sample period under
the assumption of a 40% allocation to the S&P 500 equity benchmark as a default option, with the
corresponding risk and performance indicators for the funding ratio reported in Table 13.

In Figure (5a), we note that all improved liability-friendly portfolios outperform the S&P 500 over
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Figure 4: Increase in LUG compared to the CW S&P 500 equity benchmark. This figure
shows the increase in LUG between an LDI strategy which takes the CW benchmark as equity building
block and the strategies which take the selection-based portfolios as building blocks. The latter
strategies are constructed so that the variance of the funding ratio is equal in all cases to that of the
base case (i.e. when the equity block is the CW benchmark and the equity allocation is equal to 40%).
The lines stop before 100% of equity allocation because reaching such levels would imply an equity
allocation for the selection-based portfolios of more than 100% in order to match the variance of the
funding ratio.

the sample period based on the same 40% equity allocation. The numbers in Table 13 show that for a
40% equity allocation, the volatility of the funding ratios is between 1.1% and 1.9% lower in absolute
value when the equity benchmark is the liability-friendly portfolio. With the exception of the MV-C
portfolio of all stocks, the reduction of the maximum drawdown reaches at least 10% in absolute value,
or 30% in relative value.

In Figure (5b), we observe that the outperformance is more spectacular when the allocation to the
improved equity benchmark is adjusted (increased) so as to generate the same volatility of the funding
ratio as when investing 40% in the S&P 500 index. The resulting increase in equity allocation combined
with the improved performance of the alternative benchmarks leads to even higher outperformance
with respect to the S&P 500 index.

Overall, we find that differences in performance between LDI strategies based on S&P 500 equity
benchmark versus those based on improved equity benchmarks are substantial. When the allocation
to the improved benchmark is chosen so as to match the funding ratio volatility measured with a 40%
allocation to the S&P 500 index, leading for example to a 53.3% equity allocation with the DY200-
VOL100/MV-C strategy, the LDI strategies based on the improved benchmark generate on average
an excess performance that ranges between 1.2% and 1.6% annually. Interestingly, while funding ratio
volatility has been set to comparable levels for both standard and improved benchmarks, the use of
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Figure 5: Historical trajectories for the funding ratio. These figures show the historical trajectory
of the funding ratio from 1975 to 2012. The time series of the funding ratio is computed as the ratio between
the values of the global portfolios (equity and bonds) divided by the values of the liability proxy. On the left
figure (a), the LDI strategy consists of allocating 40% to the equity block and 60% to the bond block. On the
right figure (b), the equity allocations were computed so that the variances of all funding ratios were equal to
that of the 40% allocation in the S&P500 (the target volatility for the funding ratios is 7.54%).

the improved benchmark leads to a lower maximum funding ratio drawdown compared to the use of
the S&P 500 index. For example, the strategy based on an MV-C portfolio based on the double-sort
selection has a maximum drawdown which is almost 8% lower compared to the strategy based on its
S&P 500 index counterpart. This suggests that if an investor defines an ALM risk budget in terms of
extreme risk (measured by the maximum drawdown of the funding ratio returns) rather than average
risk (defined in terms of funding ratio volatility), then an even higher allocation to the benchmark
with improved-liability hedging properties can be obtained for the same risk budget, which in turn
would lead to even more substantial outperformance levels.

It is further possible to disentangle the contribution to the improved performance which comes from
an increased allocation to the equity building block and the contribution which is generated by a higher
reward per dollar invested in equities. This exercise is carried out in Table 14 when we switch from
a 40% allocation to the CW benchmark to an iso-volatility 53.3% allocation in the DY200-VOL100-
MVC portfolio. The resulting increase in equity allocation for the same ALM risk budget, combined
with an improved risk-adjusted performance of the dedicated equity benchmark with respect to the
S&P 500 index, leads to an improvement in performance reaching 158 basis points annualised over the
1975-2012 sample period. This improvement can be decomposed into a contribution purely emanating
from the increase in equity allocation assuming no impact on performance (39 basis points) and a
contribution purely emanating from the improved performance of the equity benchmark assuming no
increase in allocation (119 basis points).

In the spirit of subsection 4.3.2, we now investigate whether the welfare improvements are robust
with respect to the introduction of inflation-indexation in the liabilities. In this case, the liabilities’
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Portfolios (a) 40% Equity Allocation (b) Iso-vol Allocation
Vol. (%) Max DD (%) Av. Ret. (%) Vol. (%) Max DD (%) Av. Ret. (%)

All / CW (S&P500) 7.54 33.4 1.73 7.54 33.4 1.73
All / MV-C 6.44 27.1 2.58 7.52 31.0 2.97
Low Vol / EW 5.84 23.0 2.39 7.53 28.9 3.02
Low Vol / MV-C 5.64 21.5 2.30 7.52 27.9 3.00
DY200-VOL100 / EW 6.02 23.3 2.58 7.54 28.6 3.18
DY200-VOL100 / MV-C 5.66 19.7 2.54 7.54 25.7 3.31

Table 13: Risk indicators for the funding ratio. The investment universe is the S&P 500 over
the 1975-2012 period (Source: CRSP). The procedure is the same as in the base case. In the names of
the portfolios, the selection is separated from the weighting scheme by a slash. The time series of the
funding ratio is computed as the ratio between the values of the global portfolios (equity and bonds)
divided by the values of the liability proxy. On the left figure (a), the LDI strategy consists of allocating
40% to the equity block and 60% to the bond block. On the right figure (b), the equity allocations
were computed so that the variances of all funding ratios were equal to that of the 40% allocation in
the S&P500 (the target variance for the funding ratios is 7.54%). The volatility is computed as the
standard deviation of fund ratio log-returns multiplied by

√
252 and the average return is computed

as the mean of fund ratio log-returns multiplied by 252.

returns are proxied by the returns on the 15-year TIPS yields and the Consumer Price Index log-
returns, as described in subsection 4.3.2 In Figure 6, we compare the LDI strategy based on the
DY200-VOL100 MV-C portfolio to that strategy that relies on the S&P 500. We consider the 40%
equity allocation (in blue and green) and the iso-variance allocation for the liability-friendly portfolio
(in red).

The most striking result again is the risk reduction implied by the liability-friendly-driven strate-
gies. For an identical 40% equity allocation, the volatility is 23% smaller and the maximum draw-
down is 45% lower (in relative values) when switching from the S&P 500 benchmark to a liability-
friendly benchmark. The corresponding improvements in average returns are also impressive, reaching
270=303-33 basis points when equity allocation is adjusted so as to generate the same funding ratio
volatility.

These results confirm that when the liabilities are inflation-linked, a liability-driven investor will
strongly benefit from the use of an equity benchmark that has been designed to have improved liability-
friendliness, even if liability-friendliness was measured with respect to a nominal bond proxy. This
result can be explained by the fact that interest rate risk is the dominant short-term risk factor in
inflation-linked liabilities (see Martellini and Milhau (2013) for more details).
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Equity Allocation
Panel A: Original equity allocation 10% 20% 30% 40% 50% 60% 70%
Equity benchmark = CW (1) 0.49 0.94 1.35 1.73 2.07 2.38 2.65
Equity benchmark = Liab. friendly 0.66 1.31 1.93 2.54 3.12 3.69 4.23
Panel B: Enhanced equity allocation 13.3% 26.7% 40.0% 53.3% 66.7% 80.0% 93.3%
Equity benchmark = CW 0.64 1.22 1.73 2.18 2.56 2.88 3.14
Equity benchmark = Liab. friendly (2) 0.88 1.73 2.54 3.31 4.05 4.75 5.42
Panel C: Excess return (2)-(1) 0.40 0.79 1.19 1.58 1.98 2.37 2.77
Excess return from increased allocation 0.10 0.19 0.29 0.39 0.49 0.58 0.68
Excess return from increased performance 0.30 0.60 0.90 1.19 1.49 1.79 2.09

Table 14: CW versus liability-friendly portfolio. The investment universe is the S&P 500 over
the 1975-2012 period (Source: CRSP). We report the average log-returns of the funding ratios, in %, for
various allocations in either the CW benchmark, or the DY200-VOL100-MVC liability friendly portfolio. The
contributions to the excess return reported in Panel C are simply computed using the simple decomposition
formula: xLF rLF − xCW rCW = (xLF − xCW )rCW + (rLF − rCW )xLF .

5 Conclusions and Extensions

While the fund separation theorem advocates a clear split between performance and hedging, the
fund interaction theorem suggests that, everything else equal, investor welfare is increased when the
PSP displays attractive liability-hedging benefits. In order to design PSPs with enhanced hedging
properties, and empirically measure the resulting impact on investor welfare, we identify two main
attributes, high dividend yield and low volatility, leading to the selection of stocks with above average
liability-friendliness. Our empirical results show that selecting 100 stocks in the S&P 500 universe
according to these criteria indeed leads to statistically significant out-of-sample improvements in port-
folio liability-friendliness measured according to various indicators. In particular, we find that the
out-of-sample tracking error of the equally-weighted portfolio decreases from 27.8% for a high volatil-
ity selection down to 14.6% for a low volatility selection over the 1975-2012 sample period, while the
average dividend yield rises from 0.51% for the low dividend yield selection to nearly 6% for the high
dividend yield selection.

This evidence of high levels of cross-sectional differences in out-of-sample measures of liability-
friendliness is robust with respect to changes in the duration of the liabilities and the presence of
inflation indexation. Moreover, we show that combining the two criteria within a double-sort procedure
leads to further improvements in terms of each measure of liability-friendliness. Hence, joint selections
based on volatility and dividend yield reach a 15% tracking error and 5.3% in average dividend yield.
Interestingly, the increase in liability-friendliness is not obtained at the cost of lower risk-adjusted
performance. In fact, Sharpe ratios of liability-friendly portfolios are systematically above those of
equally-weighted and the cap-weighted benchmarks. Our analysis also suggests that security selection
is not the only mechanism leading to enhanced liability-friendliness; the use of suitable weighting
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Figure 6: Inflation-linked liabilities. The investment universe is the S&P 500 over the 1999-2012 period
(Source: CRSP). The procedure is the same as in the base case, except that liabilities are linked with inflation
(see subsection 4.3.2 for further details). The volatility is computed as the standard deviation of fund ratio
log-returns multiplied by

√
12 (monthly returns) and the average return is computed as the mean of fund ratio

log-returns multiplied by 12.

schemes, such as constrained minimum variance weighting schemes, leads to further improvements in
both liability-hedging properties and risk-adjusted performance of the selected portfolios, even though
minimum variance optimisation alone, without the benefits of a preliminary selection of stocks with
above-average liability-hedging benefits, only leads to modest improvements in liability-friendliness.

In the end, the combination of a double sort on volatility and dividend yield and a constrained
minimum variance optimisation leads to a portfolio that reaches substantially lower levels of tracking
error with respect to a liability proxy (14% on the sample period, compared to 18.8% for the S&P 500
index) while leading to a significantly higher Sharpe ratio (0.79, versus 0.42 for the S&P 500 index)
and high average dividend yield levels (5.4% on average, versus 3.18% for the S&P 500 index). As a
result of the improvement in liability-hedging benefits, a liability-driven investor allocating for example
40% to equities on the basis of the S&P 500 index can allocate as much as 53.3% to this improved
equity benchmark for the same funding ratio volatility, and for a maximum drawdown relative to the
liabilities going down from 33.4% to 25.7%. The resulting increase in equity allocation for the same
(or lower) risk budget leads to an improvement of performance with respect to the use of the CW S&P
500 benchmark reaching close to 160 basis points (annualised for nominal liabilities over the 1975-2012
sample period). In the case of inflation-linked liabilities over the shorter 1999-2012 sample period, the
improvement in performance reaches 270 basis points.

Our analysis can be extended in many directions, notably including a focus on other factors
impacting not only the liability side, but also the asset side of investors’ balance sheets. In particular,
we may seek to assess whether investors could capture some portion of a risk premium supposed to be
earned by investing outside equity markets by selecting stocks with above average correlation with the
corresponding risk factor. One example would be the design of a dedicated equity benchmark portfolio

66



that could be used to harvest some part of the credit risk premium on behalf of large investors who
might fear that they would not be able to find in corporate bond markets the required amount of
liquidity needed.

A Proof of Proposition 2.2

For clarity, we use in the remainder of this appendix the notations AT and FT for the terminal wealth
and funding ratio achieved with an initial capital A0. If we write dAt

At
= [rt + µA]dt + σ

′
Adzt and

dLt
Lt

= [rt + µL]dt + σ
′
Ldzt, then applying Ito’s lemma twice, we obtain the dynamics for the funding

ratio F = A
L :

dFt
Ft

= dAt
At
− dLt

Lt
− d〈At, Lt〉

AtLt
+ d〈Lt〉

L2
t

,

which implies:
dFt
Ft

= [µA − µL − σ
′
AσL + σ2

L]dt+ [σA − σL]′dzt.

Hence, the drift and the volatility of the funding ratio are constant, so that the funding ratio on
date T is log-normally distributed. Specifically, the integration of the previous stochastic differential
equation gives:

lnFT = lnF0 +
[
µA − µL + 1

2(σ2
L − σ2

A)
]
T + [σA − σL]′zT ,

so that:
E[lnFT ] = lnF0 +

[
µA − µL + 1

2(σ2
L − σ2

A)
]
T,

and
V [lnFT ] = ‖σA − σL‖2T,

‖ · ‖ denoting the Euclidian norm. The expected utility from the terminal funding ratio is given by
the textbook expression for the expectation of a log-normal distribution:

E[U(FT )] = 1
1− γ exp

[
(1− γ)E[lnFT ] + (1− γ)2

2 V [lnFT ]
]

= 1
1− γF

1−γ
0 exp

[
(1− γ)

[
µA − µL + 1

2(σ2
L − σ2

A)
]
T + (1− γ)2

2 ‖σA − σL‖2T
]
.

With an investment in cash only, the terminal funding ratio is F cT . The expression for the expected
utility is formally equivalent to the one derived for the LDI strategy, but the expected excess return
and the volatility are zero, so that:

E[U(F cT )] = 1
1− γF

1−γ
0 exp

[
(1− γ)

[
−µL + 1

2σ
2
L

]
T + (1− γ)2

2 σ2
LT

]
.
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Starting from the initial capital yA0, as opposed to A0, one multiplies this expected utility by the
factor y1−γ . The condition of equality between the expected utilities from the LDI portfolio and from
the portfolio invested in cash implies that y must satisfy:

y1−γ = E[U(FT )]
E[U(F cT )] ,

By definition, the LUG is the logarithm of y, hence:

LUG = E[lnFT ] + 1− γ
2 V [lnFT ]− E[lnF cT ]− 1− γ

2 V [lnF cT ].

The LUG is thus a difference of two quadratic utilities. For the optimal strategy, we have:

µA = 1
γ
µ
′

t
Σ−1
t µ

t
+
(

1− 1
γ

)
σ
′
LσtΣ−1

t µ
t
,

σ2
A = 1

γ2µ
′

t
Σ−1
t µ

t
+ 2
γ

(
1− 1

γ

)
σ
′
LσtΣ−1

t µ
t
+
(

1− 1
γ

)2
σ
′
LσtΣ−1

t σ
′
tσL,

‖σA − σL‖2 = 1
γ2µ

′

t
Σ−1
t µ

t
− 2
γ2σ

′
LσtΣ−1

t µ
t
+
( 1
γ2 − 1

)
σ
′
LσtΣ−1

t σ
′
tσL + σ

′
LσL.

The terms which depend only on the liabilities will vanish when taking the difference with the terms
related to F cT . After further computations, we get

LUG = 1
2γµ

′

t
Σ−1
t µ

t
+
(

1− 1
γ

)
σ
′
LσtΣ−1

t µ
t
+ (1− γ)2

2γ σ
′
LσtΣ−1

t σ
′
tσL,

where
µ
′

t
Σ−1
t µ

t
= Λ′V ′tΣ−1

t V tΛ = Λ′Ω−1Λ = λ2
PSP ,

σ
′
LσtΣ−1

t σ
′
tσL = σ

′
LUΩ−1U

′
σL = σ2

LR
′
LΩ−1RL = σ2

Lρ
2
LHP,L,

and
σ
′
LσtΣ−1

t µ
t

= σ
′
LUΩ−1Λ = σLR

′
LΩ−1Λ′ = σLλPSPρPSP,L.

B Proof of Proposition 2.4

The setting of the proof is identical to the previous one. With two assets only (the equity benchmark
S and the bond benchmark B), the dynamic budget constraint takes the simpler form:

dAt
At

= x
dSt
St

+ (1− x)dBt
Bt

.
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Substituting the expressions for the dynamics of S and B, we obtain:

dAt
At

= [rt + xµS + (1− x)µB]dt+ [xσS + (1− x)σB]′dzt.

In what follows, we therefore let µA = xµS +(1−x)µB and σA = xσS +(1−x)σB denote the expected
excess returns and the volatility vector of the wealth process.

To finish the derivation of the expressions of Proposition 2.4, we need to write the moments of the
log funding ratio as functions of those of the two building blocks. We have, for the LDI strategy:

σ2
A = ‖σA‖2 = x2σ2

S + (1− x)2σ2
B + 2x(1− x)σSσBρS,B,

hence,

E[lnFT ] = lnF0 + [xµS + (1− x)µB]T + [−µL + σ2
L

2 ]T − 1
2[x2σ2

S + (1− x)2σ2
B + 2x(1− x)σSσBρS,B]T,

V [lnFT ] = [x2σ2
S + (1− x)2σ2

B + 2x(1− x)σSσBρS,B]T − [σ2
L − 2xσSσLρS,L − 2(1− x)σBσLρB,L]T.

C Proof of Proposition 2.5

Let A0
T and F 0

T be the terminal wealth and the funding ratio achieved with Strategy 0. We take a
similar definition for Strategy 1 (A1

T and F 1
T ). For i = 0, 1, the variance of the log funding ratio can

be written as:

V [lnF iT ] = V [lnAiT ]− [σ2
L − 2xiσSiσLρSi,L − 2(1− xi)σBσLρB,L]T.

The variance-matching condition states that V [lnF 1
T ] = V [lnF 0

T ], which implies that:

V [lnA1
T ]− V [lnA0

T ] = 2[x1(σS1σLρS1,L − σBσLρB,L)− x0(σS0σLρS0,L − σBσLρB,L)]T.

Moreover, the expected log funding ratio is, for i = 0, 1:

E[lnF iT ] = lnF0 + [xiµSi + (1− xi)µB]T +
[
−µL + σ2

L

2

]
T − 1

2V [lnAiT ],

hence the change in LUG is given by:

∆LUG = E[lnF 1
T ]− E[lnF 0

T ]

= x1(µS1 − µB)T − x0(µS0 − µB)T − 1
2[V [lnA1

T ]− V [lnA0
T ]].
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This can be rewritten as:

∆LUG = x1(µS1 − σS1σLρS1,L − µB + σBσLρB,L)T − x0(µS0 − σS0σLρS0,L − µB + σBσLρB,L)T.

To relate the content of the right-hand side to the expected returns and volatilities of the ratios S0
L

and S1
L , we write the dynamics of these ratios. Ito’s lemma gives, for i = 0, 1:

d(SitLt )
Sit
Lt

= [µSi − µL − σSiσLρSi,L + σ2
L]dt+ [σSi − σL]′dzt.

Hence, the expected return and volatility (tracking error) of SiL are given by:

µSi/L = µSi − µL − σSiσLρSi,L + σ2
L,

TESi = σ2
Si − 2σSiσLρSi,L + σ2

L.

Thus, the variation in LUG admits the following expression:

∆LUG = x1µS1/LT − x0µS0/LT.

Since the variance-matching allocation to the benchmark S1 satisfies x1TES1 = x0TES0, we have:

∆LUG =
[
TES0
TES1

µS1/L − µS0/L

]
x0T.
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