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Abstract

We analyze the tail of the sum of two random variables with exponential tails on
R+ (exponential distribution) and R (generalized logistic distribution). The tails
can be characterized when the dependence structure are copulas which satisfy
some technical conditions. Consequences on the Value-at-Risk are derived and
examples are discussed.

Keywords: Risk aggregation, Value-at-Risk, Generalized logistic distribution,
Tail behavior

1. Introduction

Risk aggregation is now a classical topic for researchers and practitioners
both in Finance and Insurance. The regulatory frameworks of Basel (I, II and
III) and Solvency (I and II) make it crucial to understand how the various risks
within a portfolio combine in order to estimate future losses. The naive way to
proceed is to add up individual risks. This is of course not the best solution
since assets are usually correlated, especially in the midst of financial crises.

A very popular approach seeks to analyze the marginal behavior of the risks
separately from their dependence structure. This is rendered possible via a
powerful tool: copulas. If F1, . . . , Fn are the cumulative distribution functions
(c.d.f.) of the real-valued random variables (r.v.) X1, . . . , Xn, then the copula
related to these r.v.s is the unique mapping C such that

P [X1 ≤ x1, . . . , Xn ≤ xn] = C(F1(x1), . . . , Fn(xn)), (x1, . . . , xn) ∈ Rn.

We refer to the monograph [22] for more details on the subject. Once the
marginals and the copula are specified, it becomes possible, though often com-
plicated, to study the behavior of P [X1 + · · · + Xn > x], as x → ∞. It seems
intuitive that this behavior should match, in some sense, that of the random
variable which has the heaviest tail. In fact, this is very often true, especially
when heavy tails are involved.
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More precisely, when X1 and X2 have the same heavy-tailed distribution,
then except for a handful of cases (see for instance Theorem 2.10 in [2]),

lim
x→∞

P [X1 +X2 > x]

P [X1 > x]
= c > 0. (1)

When X1 and X2 have non identical heavy tailed distribution, then this
results usually holds if X1 follows the law with the heaviest tail.

We have carried out a non-exhaustive survey of results in this direction
which we have compiled in Table 1 (where MDA stands for Maximum Domain
of Attraction). The references are ordered based on the assumptions mentioned
in the articles. Some of the results hold for two random variables, others for
n ≥ 2, some for distributions on R, others on R+. A very large majority of the
findings deal with heavy-tailed distribution.

Topic References
Regularly varying marginals [2], [3], [5], [9], [8], [18], [19], [27]
Subexponential marginals [12], [13], [17]

Lognormal marginals [2], [4]
Marginals which belong to a MDA [3], [18], [21], [27]

Rapidly varying marginals [20], [21]
Regularly varying Archimedean copula [3], [5], [9], [27]

Conditional independence [12], [15], [20]
Asymptotic independence [8], [13], [17], [19], [21]

Table 1: Articles for which (1) holds

The remainder of the paper is structured as follows. In Section 2, etc.

2. Sums of independent variables

We will henceforth consider two types of random variables with exponential
decay. We will denote exponential distributions by the letter X, that is Xλi

i
d
=

E(λi) will have density fi(x) = λie
−λix1{x≥0} and c.d.f. Fi(x) = 1− e−λix.

Similarly, Y αjj
d
= GL(αj) will denote a generalized logistic distribution with

density and c.d.f. given by

gj(x) = αj
e−x

(1 + e−x)1+αj
, Gj(x) = (1 + e−x)−αj .

It is therefore obvious that Y α1
1 has the following tails

G1(x) ∼ eα1x, x ↓ −∞, (2)

1−G1(x) ∼ α1e
−x, x ↑ ∞, (3)
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where the notation f(x) ∼ g(x) stands for lim f(x)/g(x) → 1. We will also
use f(x) ≈ g(x) when there are c, C > 0 such that cg(x) ≤ f(x) ≤ Cg(x),
asymptotically.

Further, we have

E[ezY
α
1 ] =

Γ(1− z)Γ(α+ z)

Γ(α)
, E[Y α1 ] = ψ(α)− ψ(1),

and
E[(Y α1 )2]− E[Y α1 ]2 = ψ′(α) + ψ′(1),

where ψ is the digamma function: ψ(x) = d
dx log Γ(x).

Given this asymmetry in the left and right tails in (2) and (3) , it will be
interesting to study the aggregation problem not only for Y αii but for −Y αii as
well. The rate of decrease of the tail of both the exponential and the generalized
logistic distributions can be intercalated between that of the Gaussian law and
that of sub-exponential distributions. Depending on the time lag at which
financial returns are considered, their tail behaviors may vary (see [25]). For
daily to monthly returns, the distribution of log-returns is likely to have tails
with exponential decay. The exponential and generalized logistic distributions
are therefore suitable tools for the study of risk aggregation in financial markets
for instance. The exponential distribution may serve as a model for the loss
distribution of an asset, while the generalized logistic law can closely match the
distribution of financial returns.

Note that a scaled shift x 7→ (x−µ)/σ in the c.d.f. gives the law of σX+µ and
hence the model becomes more flexible effortlessly. For notational convenience,
we shall however henceforth set µ = 0 and σ = 1.

Before stating one of our main results, we prove the following lemma which
will be of use throughout the paper.

Lemma 2.1. The hypergeometric function has the following asymptotic behav-
iors

◦ If b > a > 0 and b− a /∈ N, then, as z ↓ −∞,

2F1(a, b; c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)

(
(−z)−a +

a(a+ 1− c)
a+ 1− b

(−z)−a

z

)
+

Γ(a− b)Γ(c)

Γ(a)Γ(c− b)

(
(−z)−b +

b(b+ 1− c)
b+ 1− a

(−z)−b

z

)
+O(|z|−2−a).

◦ If b ≥ a > 0 and b = a+m where m ∈ N, then as z ↓ −∞,

2F1(a, a+m, c, z) = (−z)−a Γ(c)

Γ(a+m)

m−1∑
n=0

(a)nΓ(m− n)

Γ(c− a− n)n!
z−n

+
Γ(c)(a)m(a+ 1− c)m
Γ(c− a)Γ(a+m)m!

(−z)−a−m(log(−z) + h(a, c,m))

+O((−z)−a−m−1 log(−z)).
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where (a)n is the Pochhammer symbol: (a)n = Γ(a+ n)/Γ(a),
−1∑
n=0

= 0 and

h(a, c,m) = ψ(1 +m) + ψ(1)− ψ(a+m)− ψ(c− a−m).

Proof. The first point results from the combination of equation (17) p.63 in [6]
and the fact that 2F1(a, b, c, z) = 1 + ab

c z + o(z) as |z| ↓ 0 whenever c 6= 0. The
second point stems directly from equation (18) p.63 in [6] .

The convolution of logistic distributions was studied in [14] when α = 1 and
in [23] in the general case, but we present below our own representation of its
c.df. in the proof of the following theorem.

Theorem 2.1. If all the following random variables are mutually independent,

i) P [Xλ
1 +Xλ

2 > z] = λze−λz[1 + (λz)−1 +O(z−2)], z →∞,

ii) P [Xλ1
1 +Xλ2

2 > z] =
λ1

λ1 − λ2
e−λ2z +

λ2

λ2 − λ1
e−λ1z, ∀z ∈ R, 0 < λ1 < λ2,

iii) P [Y α1
1 + Y α2

2 > z] ∼ α1α2ze
−z, z →∞, ∀α1, α2 > 0,

iv) P [−Y α1 −Y α2 > z] = αe−αz(z+h(1 +α, 1 + 2α, 0)) +O(ze−(1+α)z), z →∞

v) if 0 < α1 < α2, b− a /∈ N∗, then as z →∞,

P [−Y α1
1 − Y α2

2 > z] =
Γ(α2 − α1)Γ(1 + α1)

Γ(α2)
e−α1z +

Γ(α1 − α2)Γ(1 + α2)

Γ(α1)
e−α2z

+O(e−(1+α1)z).

Proof. (i) It is well known that if Xλ
1

d
= Xλ

2 = E(λ), then Xλ
1 +Xλ

2 has density
fΓ(2,λ)(x) = λ2xe−λx, x ≥ 0 and c.d.f. FΓ(2,λ)(x) = γ(2, λx)/Γ(2), where γ is
the lower incomplete gamma function. Given Eq. 9.2(6) in [7] and the fact that
Γ(2) = 1, this yields (i).

(ii) However, if Xλ
i

d
= E(λi) and λ1 < λ2, then

P [Xλ1
1 +Xλ2

2 ≤ x] =

∫
R
λ1e
−λ1x1{x≥0}(1− e−λ2(z−x))1{x≤z}dx

= 1− e−λ1z − λ1

∫ z

0

e−(λ1−λ2)xdx

= 1 +
λ1

λ2 − λ1
e−λ2z +

λ2

λ1 − λ2
e−λ1z
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(iii)-(v) We first compute the c.d.f. of Y α1
1 + Y α2

2 :

P [Y α1
1 + Y α2

2 ≤ z] =

∫
R
f1(x)F2(z − x)dx

= α1

∫
R

e−x

(1 + e−x)
α1+1

(1 + e−(z−x))α2

dx

= α1

∫
R

e−x(1+α2)

(1 + e−x)
α1+1

(e−x + e−z)α2

dx

= α1e
−zB(1 + α2, α1) 2F1

(
1 + α1, 1 + α2; 1 + α1 + α2; 1− e−z

)
=

Γ(1 + α1)Γ(1 + α2)

Γ(1 + α1 + α2)
e−z 2F1

(
1 + α1, 1 + α2; 1 + α1 + α2; 1− e−z

)
(4)

where B(·, ·) is the usual beta function and 2F1 is the hypergeometric function.
The second-to-last equality stems from formula (22) p.121 in [11]. The asymp-
totic behaviors in (iv) and (v) are a simple application of the second (for m = 0)
and first points (respectively) of Lemma 2.1.

In order to prove (iii), we combine Eq. (22) in [6] with (4) to obtain, for
z > 0,

P [Y α1
1 +Y α2

2 ≤ z] =
Γ(1 + α1)Γ(1 + α2)

Γ(1 + α1 + α2)
eα1z

2F1 (α1, 1 + α1; 1 + α1 + α2; 1− ez)

3. Risk aggregation under the Bernstein copula

F ∗(z) = P [X1 +X2 ≤ z] =

∫
R
P [X1 ∈ dx,X2 ≤ z − x]

=

∫
R
f1(x)C1(F1(x), F2(z − x))dx, z ∈ R (5)

where f1 is the density of X1 and C(·, ·) is a bidimensional copula with

C1(u, v) :=
∂

∂u
C(u, v), (u, v) ∈ [0, 1]2. (6)

The function F ∗ therefore measures the probability that the return of the port-
folio is less than z. If we fix a confidence interval of p ∈ (0, 1), then there is a
1− p probability that the return of X1 +X2 will be less than the Value-at-Risk
(VaR) defined by

VaRX1+X2
p = F ∗−1(1− p), p ∈ (0, 1).
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The additivity of the VaR has thoroughly been studied in [9] when the losses
have a heavy tail. In such a framework, there is a threshold for p beyond which
either

VaRX1+X2
p < VaRX1

p + VaRX2
p or VaRX1+X2

p > VaRX1
p + VaRX2

p ,

and, in any case,

lim
p→1

VaRX1+X2
p

VaRX1
p + VaRX2

p

= c ∈ (0,∞).

The main objective of this paper is to compare the left tail of F ∗ and F when
X1 and X2 follow the same generalized logistic distribution. In some cases, we
will also be able to compute the limiting value of the ratio VaRX1+X2

p /(VaRX1
p +

VaRX2
p ) when p→ 1.

3.1. Main results
We start with the tails behavior of the sum of two independent generalized

logistic distributions.

Theorem 3.1. F ∗ in (4) satisfies

◦ F ∗(z) ∼ Γ(α2 − α1)Γ(1 + α1)

Γ(α2)
eα1z, z ↓ −∞, if α1 < α2

◦ F ∗(z) ∼ −zα1e
α1z, z ↓ −∞, if α1 = α2

We will now consider a specific configuration for the underlying copula, de-
pending on one assumption on C1 defined in (6). More preciely, we are interested
in the case where

(H1) there are ci,j ≥ 0 such that C1(u, v) =
∑

1≤i,j≤k

ci,jv
iuj−1, c1,1 > 0,

Our main result characterizes the behavior of P [X1 +X2 ≤ z] under (H1).
It can be stated as follows.

Theorem 3.2. Under (H1), if −X1
d
= L(α1) and −X2

d
= L(α2) with α1 ≤ α2,

◦ if α1 < α2,

P [X1 +X2 ≤ z] ∼ κ∗P [X1 ≤ z], z ↓ −∞

◦ if α1 = α2„

P [X1 +X2 ≤ z] ∼ κ∗∗zP [X1 ≤ z], z ↓ −∞

where κ∗ =

k∑
i=1

ci,1B(α1, 1 + α2i)
Γ(1 + α1 + α2i)Γ(α2i− α1)

Γ(1 + α2i)Γ(α2i)
and

κ∗∗ = −c1,1B(1 + α1, α1)
Γ(1 + 2α1)

Γ(α1)Γ(1 + α1)
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Proof. Under condition (H1),

F ∗(z) =

∫
R
f1(x)

∑
1≤i,j≤k

ci,jF1(x)j−1F2(z − x)idx

=
∑

1≤i,j≤k

ci,j

∫
R
f1(x)F1(x)j−1F2(z − x)idx

=
∑

1≤i,j≤k

ci,j

∫
R
g1(−x)(1−G1(−x))j−1(1−G2(x− z))idx

=
∑

1≤i,j≤k

ci,j

∫
R
g1(−x)

j−1∑
k=0

(
j − 1

k

)
(−G1(−x))k

i∑
l=0

(
i

l

)
(−G2(x− z))ldx

Where we have used the binomial formula for the last equality. This yields

F ∗(z) = α1

∑
1≤i,j≤k

ci,j

[
j−1∑
k=0

i∑
l=0

(
j − 1

k

)(
i

l

)
(−1)k+lδk,l(z)

]
(7)

where

δk,l(z) =

∫
R

ex

(1 + ex)α1+1(1 + ex)α1k(1 + ez−x)α2l
dx

=

∫
R

ex

(1 + ex)α1(1+k)+1(1 + ez−x)α2l
dx

=

∫
R

ex(1+α2l)

(1 + ex)α1(1+k)+1(ex + ez)α2l
dx

and

δk,l(z) = ezB(1 + α2l, α1(k + 1)) 2F1


1 + α1(k + 1),

1 + α2l;
1 + α1(k + 1) + α2l;

1− ez

 ,

which can be proven in the same fashion as Proposition ??. Property (22)
p.64 in [6] allows further to write

δk,l(z) = e−α1z(k+1)B(1 + α2l, α1(k + 1)) 2F1


1 + α1(k + 1),
α1(k + 1);

1 + α1(k + 1) + α2l;
(ez − 1)/ez

 ,

Now, the asymptotic behavior of the hypergeometric function can be ob-
tained via the transformation formulas of equations (17) and (18) p.63 in [6].
The outcome is the following:
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◦ if a < b, a < c,

2F1

(
a, b; c; 1− e−z

)
∼ Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
eaz, z ↓ −∞.

◦ if a = b < c,

2F1

(
a, a; c; 1− e−z

)
∼ − Γ(c)

Γ(a)Γ(c− a)
zeaz, z ↓ −∞.

Since c1,1 > 0, then if α1 = α2, the first term in (??) behaves like −Czeα1z,
while all of the others decrease at least at the speed of eα1z. If α1 6= α2, then
the slowest possible pace of decrease is eα1z and it is matched for all the terms
such that j = 1.

The proof of the result when (H2) holds follows the same reasoning.

We now turn to the analysis that this result has on the Value-at-Risk. We
will stick to the case when (H1) holds. There are two possible situations:

◦ case 1: X1 has heavier tails and

P [X1 +X2 ≤ z] ∼ cP [X1 ≤ z] ∼ ceα1z, z ↓ −∞

◦ case 2: X1
d
= X2 and

P [X1 +X2 ≤ z] ∼ −czP [X1 ≤ z] ∼ −czeα1z, z ↓ −∞

Proposition 3.1. In case 1,

lim
p→1

VaRX1+X2
p

VaRX1
p + VaRX2

p

=
α2

α1 + α2
∈ (1/2, 1), (8)

and in case 2,

lim
p→1

VaRX1+X2
p

VaRX1
p + VaRX2

p

=
1

2
(9)

In all situations, the model is therefore asymptotically subadditive, in the
sense of (2.1) in [10].

Before we start the proof of the Proposition, we introduceW−1, the Lambert
W function which is defined only for negative arguments. This function is one
of the the reciprocals of the mapping y 7→ yey. It is strictly decreasing on
(−1/e, 0). We refer to [26] for more details on the subject.

Proof. We only provide the details for case 2, as it is the most difficult one.
First note that if

G(z) = P [X1 +X2 ≤ z] ∼ −czeα1z, z ↓ −∞,

8



then
G−1(z) ∼W−1(−α1z/c)/α1, z → 0. (10)

Indeed, if we set G−1(z) = W−1(−α1z/c)(1+h(z)), then when z → 0, G−1(z) ↓
−∞ and we thus have

1 =
G ◦G−1(z)

z
∼ − c

z
G−1(z)eα1G

−1(z), z → 0

= − c

α1z

(
(1 + h(z))W−1(−α1z/c)e

(1+h(z))W−1(−α1z/c)
)

= −c(1 + h(z))

α1
eh(z)W−1(−α1z/c) ×

(
−α1

c

)
, (11)

which goes to 1 if and only if h(z) → 0, hence (10) is proved. Moreover, by
Equation (17) in [26], W−1(z) ∼ log(−z), for z ↑ 0−. Using the same reasoning,
we get that if

F (z) ∼ eα1z, z ↓ −∞,
then

F−1(z) ∼ log(z)/α1, z → 0.

Since log(x)/ log(cx) ∼ 1 for any c > 0 when x→ 0,

G−1(z)

2F−1(z)
∼ 1

2
, z → 0,

and the result is proved. In case 1, it is easy to show that

G−1(z) ∼ log(z)/α1, F−1
1 (z) + F−1

2 (z) ∼ α1 + α2

α2α2
log(z), z → 0,

where F1 and F2 are the c.d.f.s of X1 and X2, respectively.

3.2. An example
In this section, we present classical families copulas for which either (H1)

or (H2) holds. We of course recall that the independent copula verifies both of
these assumptions.

We start with the Farlie-Gumbel-Morgestern copula, which is defined by

CFGMt (u, v) = uv + tuv(1− u)(1− v), t ∈ [−1, 1]

with
∂

∂u
CFGMt (u, v) = (1 + t− 2tu)v + (2tu− t)v2.

Obviously, this copula satisfies (H1) with

c1,1 = 1 + t

c1,2 = −2t

c2,1 = −t
c2,2 = 2t
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and in this case, the behavior of G for large negative values can be precisely
computed via Theorem 3.2 for any α1, α2, or t.

In order to numerically illustrate the result of Proposition 3.1, we have com-
puted the ratio VaRX1+X2

p

VaRX1
p +VaRX2

p

for various values of α = α1 = α2, t and p. The
results are presented in Table 2.

t = −0.5 t = 0.2 t = 0.8
1− p = 10−2 0.684 0.731 0.762

α = 1/5 1− p = 10−4 0.613 0.645 0.664
1− p = 10−6 0.585 0.609 0.623
1− p = 10−2 0.634 0.698 0.739

α = 1 1− p = 10−4 0.597 0.637 0.658
1− p = 10−6 0.577 0.606 0.620
1− p = 10−2 -0.802 -0.436 -0.233

α = 5 1− p = 10−4 0.347 0.417 0.456
1− p = 10−6 0.468 0.510 0.530

Table 2: Ratios of VaR for various values of α, t and p

First of all, the negative numbers stem from the fact that for p = 0.01 and
α = 5, the tail is so light that the VaR of the portfolio is positive instead of
being negative, as we expect it to be. This can be observed on Figure ??: as α
increases, the first centile shifts to the right; it seems that this shift is accelerated
for the law of X1 +X2.

Next, the convergence to 1/2 is in fact quite slow. In practice, 1−p is seldom
below 0.01 or 0.001. Further computations show that for α1 = α2 ∈ (0, 2), the
VaR ratio will lie between 1/2 and 1, for p > 0.9.

Before we turn to copulas satisfying a looser condition, we wish to highlight
that Theorem 3.2.10 in [22] provides a generalization of the FGM copula which
also verifies (H1). Another example of copulas satisfying (H1) is the Bernstein
family (see [24] for instance).

4. Bounds for the left tail

(H2)


there are c+i ≥ c

−
i ≥ 0, with c−1 > 0 such that

∀(u, v) ∈ [0, 1]2,

n∑
i=1

c−i v
i ≤ C1(u, v) ≤

n∑
i=1

c+i v
i.

A natural corollary of our main result is the following

Proposition 4.1. If α1 < α2, then under (H2),

P [X1 +X2 ≤ z] ≈ P [X1 ≤ z], z ↓ −∞
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and if α1 < α2,

P [X1 +X2 ≤ z] ≈ −zP [X1 ≤ z], z ↓ −∞,

The Ali-Mikhail-Haq copula is defined by

CAMH
t (u, v) =

uv

1− t(1− u)(1− v)
, t ∈ [−1, 1),

which yields
∂

∂u
CAMH
t (u, v) =

v(1− t) + v2t

(1− t(1− u)(1− v))2
.

In order to ensure the positivity of the coefficients c±2 , we will restrict ourselves
to t ∈ (0, 1). In this case, it is easy to show that

c−1 = 1− t
c+1 = (1− t)−1

c−2 = t

c+2 = t(1− t)−2.

When t ∈ (0, 1), it is obvious that CAHMt satisfies (H2).
A last example is copula #10 in the list of Archimedean copulas in [22]. It

is given by

C#10
t (u, v) =

uv

(1 + (1− ut)(1− vt))1/t
, t ∈ (0, 1]

and hence

∂

∂u
C#10
t (u, v) = v

{
(2− vt)(1 + (1− ut)(1− vt))−1−1/t

}
= v lt(u, v)

with

∂

∂u
lt(u, v) = (t+ 1)ut−1(1− vt)(2− vt)(1 + (1− ut)(1− vt))−2−1/t ≥ 0

and

∂

∂u
lt(u, v) = vt−1(1 + (1− ut)(1− vt))−2−1/t(2− vt − 2ut − tut − (uv)t).

From the first derivative, we get that lt reaches its maximum and minimum
on the border of the unit square. From the second derivative, we get that
v 7→ lt(0, v) is increasing while v 7→ lt(1, v) is decreasing. Therefore, the extrema
can only be located at points (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. It turns out
that the lowest point is (0, 0) and the highest is (1, 0), that is, in the framework
of (H2),

c−1 = lt(0, 0) = 2−1/t

c+1 = lt(1, 0) = 2.
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5. Extensions

We are able to precisely characterize the tail of X1 +X2 when the marginals
follow a generalized logistic law and the dependence structure satisfies some
technical condition. In fact, Theorem 3.2 can easily be adapted to exponential
distributions. A natural question is whether other distributions with exponential
tails satisfy

P [X1 +X2 ≤ z] ∼ −czP [X1 ≤ z], z ↓ −∞, (12)

where X1
d
= X2, and under which dependence structure.

A good candidate is the Variance-Gamma random variable X d
= VG(λ, α, β),

with density

fV G(x) =
(α2 − β2)λ|x|λ−1/2Kλ−1/2(α|x|)

√
πΓ(λ)(2α)λ−1/2

eβx, x ∈ R,

and moment generating function

M(z) = E[ezX ] =

(
α2 − β2

α2 − (β + z)2

)λ
, |z + β| < α,

where Kν is the modified Bessel function of the second kind of order ν. The
parameter range is λ > 0, α > β ≥ 0. Given M , it is obvious that the Variance-
Gamma class is closed under convolution and that if X1

d
= VG(λ1, α, β) and

X2
d
= VG(λ2, α, β), then X1 +X2

d
= VG(λ1 + λ2, α, β). We recall that∫ x

−∞
(−y)neαydy = Γ(n+ 1, αx)/αn+1, α > 0,

where Γ(·, ·) is the upper incomplete gamma function. This identity, combined
with he asymptotic behavior of Kν(·) and Γ(·, ·) given in 9.7.2 and 6.5.32 in [1]
ensure that for λ = 1, (12) holds when X1 and X2 are independent. Whether it
is possible to obtain results in the spirit of Theorem 3.2 for the VG(1, ·, ·) class
remains an open question.

Lastly, another generalization of our result is the following. It is tempting to
transform the sums in (H1) and (H2) into series. For instance, Frank’s copula
is given by

CFt (u, v) = −1

t
log

(
1 +

(e−tu − 1)(e−tv − 1)

e−t − 1

)
, t ∈ R\{0}

and
∂

∂u
CFt (u, v) =

et(etv − 1)

(et(1+v) + et(1+u) − et − et(u+v))2

where the denominator is bounded on (u, v) ∈ [0, 1]2 (from above by (et − 1)−1

and from below by (e2t − et)−1 for t > 0) and the numerator can be written

et(etv − 1) = et
∞∑
n=1

(tv)n

n!
.

12



When t > 0, this copula satisfies a generalized (H2) for n → ∞. As long as
∞∑
i=1

c+i <∞, it is possible to invert the integral and the series in the bounds of

G and the result remains valid.
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