
PRICING EXOTIC OPTIONS IN THE FINITE MOMENT LOG-STABLE MODEL

GUILLAUME COQUERET

Abstract. We investigate the model introduced by Carr and Wu in [13] form the perspective of exotic
option pricing. The focus is set on exotic options of Lookback and Barrier type. In some cases, closed-
form results are available. We also compare various simulation techniques, for the purpose of Monte-Carlo
valuation.

1. Introduction
Because of its analytical tractability and its connection to the central limit theorem, the Gaussian dis-
tribution is ubiquitous in many research fields (Physics, Biology, Economy, Finance). In Finance, it was
introduced by Bachelier in [3] and the subsequent developments related to option pricing and involving
the Brownian motion were synthesized in [34], section 6.

However, models based on the Gaussian law are constrained by at least two of its features: its symmetry
and its very light tails. Furthermore, most of the random phenomena pertaining to these models are
far from normally distributed. It is therefore logical to look for alternatives. The α-stable family of
distributions seems appealing since its has the Gaussian law as a limit (α → 2) and thus generalizes it.
It has heavy tails and enables both positive and negative skewness.

Chronologically, it was probably Mandelbrot who first introduced stable distributions into Economic
Theory [31] and Finance [32]. An overview of applications of stable laws in Finance is given in the
monograph [39]. One of the recurrent questions which arise in the literature is whether or not stock
returns have stable-like distributions. Scholars and practitioners have published contradicting results on
this topic for over four decades (a non-exhaustive sample is: [16], [1], [29], [22]).

If returns can indeed be modeled by stable laws, then the next logical step is the pricing of options
written on stocks driven by such distributions. In order to do so, the classical framework is to use
exponentials of Lévy processes (hence postulating that returns are i.i.d., regardless of their time scale).
This is quite problematic since the heavy tails of the stable laws imply infinite prices for standard Call
options under these assumptions. Empirically, one way to circumvent this inconvenience is to consider
options with very short maturity (see [33]). Unfortunately, this is not satisfactory since options are very
often long-lived (warrants, for instance). A tractable solution was provided by the Finite Moment Log-
Stable (FMLS) model, due to Carr and Lu in [13] (even though a hint towards this direction was already
in [33]).

Their idea is to resort to completely asymmetric stable distributions. In this case, the left tail remains
heavy, but the right tail becomes sub-exponential, thereby yielding finite option prices. Another way to
ensure finite prices is to force the damping of the tails of the distribution. The result is a wide class of
distribution, known as the tempered-stable (also referred to as CGMY or KoBoL) laws, which has been
extensively studied in Finance ([7], [9], [11], [26] (chapter 12), [38] and [40]).

The purpose of this paper is twofold. First, we wish to further investigate the model of Carr and Wu
[13] by providing exact and approximative results on barrier and lookback options. Our second aim is to
make a short review of up-to-date Monte-Carlo simulation techniques for exotic options in exponential-
Lévy models within the stable framework. We would like to underline that even though our results are
tailored for stock markets, they can be easily be transposed to other securities (commodities, futures,

Key words and phrases. Pricing, Lookback, Barrier option, spectrally negative stable process.
ESSEC Business School & Université Lille 1.

1



2 GUILLAUME COQUERET

indexes or Foreign Exchange derivatives, for instance), whenever the recourse to stable distributions
seems relevant.

The paper is organized as follows. In section two and three, we set the framework of the model and
state our exact results. Section four is devoted to a discussion on approximative simulation methods
towards valuation. One technical result, along with the proofs are given in the appendix.

2. Presentation of the model
We start by postulating that the stock value under consideration can be modeled, under the risk-neutral
measure P as follows

(2.1) St = S0e
(r−d−σα)t+σX

(α)
t , t ≥ 0

where r and d are the continuous risk-free rate and dividend rate respectively, which we assume to be
constant; σ is a strictly positive constant and X(α) a spectrally negative α-stable Lévy process with
α ∈ (1, 2) and such that

(2.2) EP [eσX
(α)
t ] = etσ

α

The model therefore has two free parameters (σ and α), while the classical Black-Scholes model has
only one, the volatility. For notational convenience, we will henceforth omit the dependence in P in our
notations, since all of our results will hold under the risk-neutral measure. Compared to [13], we have
introduced a scaling factor which further simplifies the calculations. It is easy to see with (2.2) that E[Snt ]
is finite for any n ≥ 0, which justifies the denomination of the model.

We denote by Ft the natural filtration of the process X(α). Condition (2.2) ensures that the process
Lt = e−(r−d)tSt is an Ft-martingale under P . An important feature of X(α) is that it has only negative
jumps, hence the distribution of the asset’s log-returns RT−t = log(ST /St) is strongly negatively skewed:
its density has a power decaying tail on the left and an exponentially decaying tail on the right. Empiri-
cally, this can be interpreted as follows: stocks usually increase slowly, with daily positive returns rarely
above 5% or 10%, while they can experience massive daily losses due either to macro-economic shocks or
to the publication of unfavorable stock-specific news or reports.

In their paper [13], Carr and Wu show that the representation (2.1) for the stock value is able to
generate any type of configuration for the implied volatility smirks observed in the S&P 500 option
market. As figures 1 and 2 show, α drives the slope and σ the level. In order to compute vanilla price
options in their model, they use the method developed by Carr and Madan in [12]. With the help of
this technique, they show that the post-calibration pricing error implied by (2.1) is never worse (in fact
often better) than that of other popular models with 3 to 6 free parameters (for instance, the Merton
Jump-Diffusion process with stochastic volatility).
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Figure 1. Graph of the implied
volatility for S = K = 1, σ = 0.15
and r − d = 0
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Nowadays, the option market for most stocks with large market capitalization is very liquid. Hence,
the model calibration can be used to price options with more complicated payoffs. We will focus on two
types of such products. We begin with the lookback options which have the following payoffs at maturity
t = T

(2.3) pLC = ST − IT for a Lookback Call, pLP = MT − ST for a Lookback Put

where
IT = inf

0≤t≤T
St, MT = sup

0≤t≤T
St

which guarantees that the payoff is always positive. The prices at time t for these securities under the
risk-neutral measure are

(2.4) LCt = e−r(T−t)E[ST − IT |Ft] and LPt = e−r(T−t)E[MT − ST |Ft]
The time t = 0 is the date of issuance of the option.

The second family of options is much wider. Barrier options are classical puts and calls which are
activated or killed if a barrier has been hit (or not hit) before the maturity of the option. The option
is called "In" (resp. ”Out”) if it is activated (resp. killed) upon hitting the barrier. If the barrier
is to be reached from below (resp. above), then the option is "Up" (resp. ”Down”). For instance, if
(x)+ = max(x, 0), we define the payoff at maturity of these options in two cases

pUIP = (K − ST )+1{MT>B} for an Up and In Put

pDOC = (ST −K)+1{IT>B} for a Down and Out Call

where K is the strike of the option and B its barrier.
The corresponding prices are

(2.5) UIPt = e−r(T−t)E[(K − ST )+1{MT>B}|Ft]

and
DOCt = e−r(T−t)E[(ST −K)+1{IT>B}|Ft]

It is possible to provide exact formulae for (2.4) and (2.5) in some cases. It is the purpose of the next
section.

3. Exact valuation
3.1. Pricing lookback options - case r − d = σα. We first deal with the lookback options and start
by a simplified case when S is modeled by the exponential of an asymmetric stable Lévy process without
drift. In this case, some results are available, both for the running maximum and the running minimum
of the driving Lévy process. The first valuation of Lookback options, in the Black-Scholes setting, is due
to Goldman, Sosin and Gatto in [19]; another reference is [17]. In the FMLS model, the following result,
the proof of which may be found in the Appendix, holds.

Proposition 3.1. If r − d = σα, then, for T=1,

(3.1) LP0 = S0e
−r
(
E1/α(σ)− eσ

α
)

and

(3.2) LC0 = S0e
−r
(
eσ

α

− α

Γ(1/α)
eσ

α

∫ ∞
σ

e−z
α

dz

)
where Eα(·) is the Mittag-Leffler function:

(3.3) Eα(z) =

∞∑
k=0

zk

Γ(1 + αk)
, α > 0
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Remark 3.1. For α = 2, E1/2(z) = ex
2

(erfc(−z)) (see section 45:14 in [37]). By the Désiré-André identity,
the density of the supremum MB of the Brownian motion Bt is given by

fMB
t

=
2√
2πt

e−x
2/(2t)1{x≥0}, t > 0

and the change of variable z =
√

(x− σt)2/(2t) then leads to∫ ∞
0

2eσx√
2πt

e−x
2/(2t)dx = eσ

2t/2

∫ ∞
0

2√
2πt

e−(x−σt)2/(2t) = eσ
2t/2erfc(−

√
tσ2/2)

hence the results are consistent in the Brownian case, for St = S0e
σ
√

2Bt .

We provide graphs of both prices as functions of α and σ (with S0 = 1, r = σα and d = 0). The values
were computed using Mathematica; the series in (3.3) was truncated above k = 400 and the integral in
(3.2) was computed using the function NIntegrate.

Figure 3. Graph of LP for
α ∈ (1, 2) and σ ∈ (0.1, 1)

Figure 4. Graph of LC for
α ∈ (1, 2) and σ ∈ (0.1, 1)

Notice that for the Lookback Put, the price is increasing, both in α and σ, but for the Lookback Call,
it is almost constant in α. This difference can qualitatively be explained by the fact that a variation in
α has more impact on the running minimum of S than on its running maximum.

The valuation of these products on the secondary market for t ∈ (0, T ) is a more complicated task.
By the independent and stationary increments of X(α), we can consider an updated model:

(3.4) St+s = Ste
(r−d−σα)s+σX̃αs , s ≥ 0

Where X̃(α) is an α-stable spectrally negative Lévy process (that is, an independent copy of X(α)). The
payoff of the lookback options are given by

pLCt = ST −min(It, It,T ), pLPt = max(Mt,Mt,T )− ST

where
It,T = inf

t≤s≤T
Ss, Mt,T = sup

t≤s≤T
Ss

Therefore, under (3.4), the prices, at time t, of lookback options issued at time zero are detailed in the
following formulae.
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Theorem 3.1. At time t ∈ (0, T ), when r − d = σα, the lookback prices are given by,

LCt = Ste
(T−t)(σα−r) − e−r(T−t)

∞∑
n=1

It(log(St/It)/σ)αn−1

Γ(αn− 1)Γ(1− n+ 1/α)(αn− 1)(T − t)n−1/α

+Ste
(T−t)(σα−r)


∞∑
n=1

∫ log(St/It)/σ

0

e−σxxαn−2dx

Γ(αn− 1)Γ(1− n+ 1/α)(T − t)n−1/α
− α

Γ(1/α)

∫ ∞
σ(T−t)1/α

e−z
α

dz



LPt = e−r(T−t)
αMt

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1) sin(πn/α)(log(Mt/St)/σ)n

n!n(T − t)−n/α
− Ste(T−t)(σα−r)

+e−r(T−t)St

E1/α[σ(T − t)1/α]− α

π

∞∑
n=1

Γ(n/α+ 1) sin(πn/α)

∫ log(Mt/St)/σ

0

eσxxn−1dx

n!(T − t)−n/α


The proof of this result is given in the Appendix. In practice, the series must be truncated. The

convergence is quite fast whenever log(St/It)/σ < 1 or log(Mt/St)/σ < 1, that is, St/It < eσ orMt/St <
eσ. Note that the cases St = It or St = Mt are coherent with the results (3.1) and (3.2).

3.2. Pricing of an Up and In Put - case r = d. Because the computation of the expectation (2.5)
requires the knowledge of the distribution of the couple (ST ,MT ), we are able to provide an exact result
only in a particular case.

We follow Bowie and Carr [8]. They show that under the assumption r = d, barrier options can
be hedged using linear combinations of vanilla options and barrier Bonds, that is, options with terminal
payoffs 1{MT>B}, 1{MT<B}, 1{IT>B} or 1{IT<B}. Unfortunately, one of their results requires a symmetry
formula which is not available for stable process with α < 2. Moreover, their second family of results
depends on the Put-Call parity upon touching the barrier, therefore, the negative jumps in the FMLS
model make it impossible to value "Down" type options using their methods. In fact, the only case we
can consider is the Up and In Put with K > B. If r = d, it is shown in [8] that the replicating portfolio
consisting of one standard call with strike K and K−B Up and In Bonds is exactly equivalent to the UIP.
If the barrier is never hit, both their values are zero but if the barrier is hit (continuously, i.e. without
jumps), then, by the classical (vanilla) Put-Call parity, the portfolio is exactly worth the price of the
vanilla put. The payoff of the digital barrier option is 1{MT>B}, which leads to the following valuation.

Proposition 3.2. If r = d and K > B, the price of an UIP option at issuance is given by

UIP0 = e−rT (K −B)P [MT > B] + C(K,T )

= e−rT (K −B)P
[
MXα,µ

T > log(B/S0)/σ
]

+ C(K,T )(3.5)

where µ = −σα is the drift of log(ST /S0), MXα,µ

T = sup
0≤t≤T

(X
(α)
t + µt) = sup

0≤t≤T
log(St/S0). C(K,T ) is

the price of a vanilla call of strike K and maturity T .

Of course, under the event (Mt < B), the price at time t < T is easily derived:

UIPt = e−r(T−t)(K −B)

∫ ∞
B

fM̃T−t
(x)dx+ Ct(K,T − t)

= e−r(T−t)(K −B)P
[
M X̃α,µ

T−t > log(B/St)/σ
]

+ Ct(K,T − t)(3.6)
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where Ct(K,T − t) is the price, at time t, of a vanilla call with strike K and maturity T − t and
M X̃α,µ

s = sup
0≤t≤s

(X̃
(α)
t +µt). For an absolutely continuous random variable Y , the function fY will denote

its density.

The probabilities in (3.5) and (3.6) can be computed in a closed form using Theorem A.1 in the
Appendix for a non-rational α - this is a very mild condition, since, for instance, α = 1.5 ≈

√
2 + 0.086.

We underline that these results also gives the price for the corresponding UOP, by the relationship
UOP + UIP = P . Equation (3.5) stems from an exact static hedging strategy because there are no
positive jumps. It is therefore not possible to proceed similarly for the DIC options. The condition r = d
can be suited to options on futures or, as in [8], to foreign exchange options on the spot, when rd = rf

(both the domestic and the foreign risk free rates are equal).

4. Approximative pricing
4.1. Classical Monte-Carlo, first method. Whenever the jump measure of a Lévy process is known,
it is possible to simulate approximative sample paths of this process and hence to generate sample payoffs
of exotic options. Repeating this procedure many times and invoking the law of large numbers gives a
close proxy to the average value of the payoff. This technique is usually called Monte-Carlo pricing. If
the payoffs have a finite variance (which is the case for all classical exotic options in the FMLS model),
the speed of convergence of this method is σ̂N/

√
N where N is the number of simulations and σ̂N is

the empirical standard error of the N generated random payoffs. The central limit theorem provides
confidence intervals for the average value of the proxy.

The critical issue in the FMLS model is that the underlying Lévy process has infinite activity: it has an
infinite number of very small jumps within any time interval. In this case, the best simulation technique
to date was developed by Asmussen and Rosinski in [2]. If we are aiming at simulating Xα,µ

t = X
(α)
t +µt,

then we should consider

(4.1) Xε
t = µεt+ vεBt +

∑
0≤s≤t

∆X(α)
s 1|∆X(α)

s |>ε
, t > 0, ε ∈ (0, 1)

Where Bt is a standard Brownian motion. In this representation, the small jumps have been omitted and
the values µε and vε account for the mean and standard error of this truncation. In our case, because
the jumps are fully compensated µε = µ, and

vε =

(∫ 0

−ε
x2ν(dx)

)1/2

=

(∫ 0

−ε

x2

Γ(−α)(−x)1+α
dx

)1/2

=
ε1−α/2√

Γ(−α)(2− α)

In his PhD thesis, Dia, [15], proved the following error bounds, which we have adapted to our setting.
The prices LC, LP and UIP are given by (2.4) and (2.5) while LCε, LP ε, UIP ε are their approximated
counterparts, using the process defined by (4.1).

Proposition 4.1. For ε ∈ (0, 1/2) and T = 1, the approximation errors satisfy

|LP − LP ε| ≤ S0C max

(
ε2−α, ε1−α/3

√
log(ε−α/3)

)

|LC − LCε| ≤ S0C max

(
ε2−α, ε1−3α/8

√
log(ε−α/4)

)
|UIP − UIP ε| ≤ S0Cε

1/2−α/6
√

log(ε−α/6)

and the latter rate remains valid for any barrier put option.

The S0 constant was added to remind that the error increases linearly with this variable.
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Proof. In the FMLS model, the functions defined by Dia are equal to σ0(ε) = ε1−α/2, β(ε) = Cεα where
C is a generic constant which does not depend on ε. The error on E[S1] is given by Proposition 4.18
(and the remark subsequent to Proposition 4.4) and it is equal to Cε2−α. It must be compared with the
error on E[I1] which is smaller Cε1−α/3

√
log(ε−α/3) (Theorem 4.22 with f(x) = e−x). Lastly, the error

on E[M1] is bounded by Cε1−3α/8
√

log(ε−α/4), see Proposition 4.28 (with p = 2 and θ = 1/2).
The result for barrier options stems from Proposition 5.50 in [15], with ρ = θ = 1/2 and β̃ defined in

Proposition 4.29. �

These error bounds are quite problematic when α is not close to 1. For instance, if α = 1.5, and we
want to price a Lookback Put, then in order to obtain a 10−2 precision for S0 = C = 1, we must choose
ε = 2.10−5, which is very small. This corresponds to a jump intensity of 3.106, which means that we have
to simulate, on average three million jumps per unit interval.

The exact results (3.1) and (3.2), enable us to test these bounds. We have performed Monte-Carlo
simulations for various values of ε and α, with σ = 0.5 and S0 = 1. In order to be precise, we chose
N = 106 so that σ̂N/

√
N ≤ 10−3. The errors of the prices are provided in the table below. The NA:="Not

Available" cells were not computed, since, for α = 1.5 and ε = 10−4, the simulations lasted twenty hours.
The case α = 1.9 and ε = 10−4 would have required several days, which is irrelevant in a pricing context.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 exact value
Lookback Call (α = 1.1) <0.001 -0.002 -0.002 -0.002 0.419

(α = 1.5) +0.001 -0.007 <0.001 +0.02 0.483
(α = 1.9) +0.008 -0.002 +0.002 NA 0.515

Lookback Put (α = 1.1) +0.002 <0.001 +0.001 +0.001 0.066
(α = 1.5) +0.012 +0.010 +0.001 +0.002 0.296
(α = 1.9) +0.033 +0.023 +0.011 NA 0.481

Table 1. Absolute errors on lookback prices for various values of ε and α (∆t=0.005, σ = 0.5)

There are two main conclusions to be drawn from this table. First, the error bounds in Proposition 4.1
are not optimal. The convergence is in fact faster. The second conclusion is more technical. In order to
be able to simulate the sample paths of the Brownian motion, we chose a time discretization of ∆t=0.005
for the piecewise constant Euler scheme, that is to say, for i ∈ [1, (∆t)−1] and ti = i∆t,

Bt ≈ B̃ti =
√

∆t

i∑
k=1

Nk, ∀t ∈ [ti, ti+1)

where the Nk are independent normal laws. ∆t = 0.005 represents 200 points per unit interval. In
comparison, the case α = 1.1 and ε = 0.1 implies on average 1.4 jumps per unit interval while the case
α = 1.5 and ε = 0.0001 requires on average more than 280,000 jumps per unit time. Hence, the choice of
the time discretization ∆t introduces a bias and should be made in accordance with ε. This is what may
explain why, as ε decreases, the prices of the Lookback Call do not gain accuracy, except when α = 1.9.

It seems appealing to think that taking vε = 0 would probably have given better results in some cases.
We have thus run the same computations, but without the Brownian part and the outcome is summarized
in the table below.

For α = 1.1, the errors are comparable to the simulations embedding a Brownian component. However,
in the other cases, the error is quite sizable, especially for α = 1.9. This can be explained by the fact that
vε = 0.015 when ε = 0.001 and α = 1.1, while vε = 0.95 when α = 1.9 : in order to match the volatility
of X(α), the simulation requires an important Brownian coefficient when α = 1.9. Consequently, it seems
reasonable to keep the Brownian component whenever α ≥ 3/2 and ε ∈ (10−4, 10−1).

4.2. Classical Monte-Carlo, second method. The second method of Monte Carlo simulation relies
on the closeness of stable distribution under convolution. Indeed, if X(α) is an α−stable distribution and
X1, . . . , Xn n independent copies of it, then

(4.2)
X1 + · · ·+Xn

n1/α

d
= X(α) + dn
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ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

Lookback Call (α = 1.1) -0.006 -0.017 -0.004 -0.001
(α = 1.5) +0.028 +0.003 +0.005 +0.015
(α = 1.9) +0.287 +0.216 +0.173 NA

Lookback Put (α = 1.1) +0.007 +0.006 +0.001 <0.001
(α = 1.5) +0.075 +0.029 +0.005 +0.003
(α = 1.9) +0.321 +0.238 +0.179 NA

Table 2. Absolute error on lookback prices for various values of ε and α (σ = 0.5, no
Brownian component)

for some real number dn.

If we consider the process X(α), then ∀t ≥ 0, E[X
(α)
t ] = 0 and dn = 0 (the random variable is in

fact strictly stable, see [41], Definition 13.1 and Theorem 14.7 (vi). Because of the independence of its
increments, is therefore possible to simulate Xα,µ using a discrete uniform skeleton ti = i∆t = i/n for
i = 0, . . . n with t0 = 0 and tn = T . The approximation X̂α,µ is a piecewise constant process such that
X̃α,µ

0 = Y0 = 0 and

(4.3)

 Yi = Yi−1 + Z
(α)
i /n1/α, i ∈ [1, n]

X̃α,µ
t = Yi + iµT/n, ∀t ∈ [ti, ti+1), i ∈ [0, n]

where the Z(α)
i are independent and have a completely asymmetric α−distribution (i.e., they have the

same law as X(α)
1 ).

We use the method of Chambers, Mallows and Stuck [14] to simulate the stable random variables, that
is

(4.4) Z(α) =
sin
(
α
(
U + π(2−α)

2α

))
cos(U)1/α

cos
(
U − α

(
U + π(2−α)

2α

))
E

(1−α)/α

is α−asymmetrically distributed if U is a uniform random variable on [−π/2, π/2] and E is an independent
1−exponentially distributed variable.

This simulation method has two advantages over the previous one: first, there is no interference
between the simulation of the pure-jump part and that of the Brownian part; second, the number of
simulation points is deterministic.

We provide below some results on the valuation of two barrier options. The first one is an Up and In
Put with S0 = 40, B = 45, K = 50 and T = 1, while the second one is a Down and Out Call with S0 = 50
and K = 40. In order to compare our results to those of subsection 3.2, we consider the case r = d. The
parameters are σ = 1/2, α = 3/2, and we set r = d = 0. We first put the stress on the effect of n on
the convergence of the price of the barrier from a discretely monitored process to a quasi-continuously
observed process. The number of simulations is N=200,000 in all of the cases.

Let us focus on the UIP. Because the simulation is stepwise constant, the actual behavior of Xα,µ

inside the interval (ti, ti+1) is unknown and the supremum of the process inside this time interval is very
likely to be greater than Xα,µ

ti or Xα,µ
ti+1

. This is why, once i = n and the discretization is over, both
ST and −IT are underestimated by such a procedure. As n increases, the range of this underestimation
decreases and the event {S̃T > B} (embedded in the payoff) becomes slightly more likely. This explains
why the price of the UIP increases as n increases. The opposite effect is of course logical in the case of
the DOC.
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Up and In Put (α = 1.5) n = 50 n = 150 n = 500 n = 2000
Average 8.389 8.851 9.145 9.298

Std Error (σ̂N ) 12.795 13.047 13.223 13.154
CPU time (sec.) 5 14 44 174

Down and Out Call (α = 1.5) n = 50 n = 150 n = 500 n = 2000
Average 10.909 10.535 10.345 9.986

Std Error (σ̂N ) 21.953 21.799 21.864 21.453
CPU time (sec.) 5 14 44 174

Table 3. MC results on barrier option prices for various values of n

We wish to underline that formula (3.5) combined to Theorem A.1 yields a value of 9.38 for the
UIP (with α =

√
2 + 0.086 ≈ 3/2). This is 0.08 above our mean value for n = 2000 (we recall that

σ̂N/
√
N ≈ 0.03), hence the convergence to a continuous observation is quite slow.

For α =
√

15/4 ≈ 1.93, the approximative value for the UIP is 11.286 (with the same parameters and
n = 2000), for a theoretical value of 11.892. For α =

√
5/4 ≈ 1.118, the values are 3.304 versus 3.283.

The convergence (as n increases) is thus faster as α ↓ 1.

4.3. Wiener-Hopf Monte-Carlo. A recent method, described in [25], also makes it possible to avoid
the technical arbitrage between ∆t and ε of the first method. The idea is to concatenate small samples of
independent trajectories of Xα,µ stopped at an independent exponential time and to use the Wiener-Hopf
factorization (see [6], chapter VI or [27], chapter 6). More precisely, if we consider Ieq and Seq the running
infimum and supremum of Xα,µ stopped at time eq, an independent q−exponentially distributed time,

then Xα,µ
eq

d
= IX

α,µ

eq + MXα,µ

eq . If we define t(q, n) =

n∑
k=1

e(i)
q where the e(i)

q are independent copies of eq,

then it is formally proved in [25] that

(4.5)
(
Xα,µ
t(q,n), S

α,µ
t(q,n)

)
d
= (V (q, n), J(q, n))

where V and J are defined iteratively for n ≥ 1 by

V (q, n) = V (q, n− 1) + I
(n)
eq +M

(n)
eq

J(q, n) = max
(
J(q, n− 1), V (q, n− 1) +M

(n)
eq

)
where V (q, 0) = J(q, 0) = 0 and M

(n)
eq (resp. I

(n)
eq ) are independent copies of MXα,µ

eq (resp. IX
α,µ

eq ).
This construction is in fact fairly natural as it corresponds to a simple concatenation of independent
trajectories of X.

Invoking the law of large numbers, we then have, for k large enough

E
[
F
(
Xα,µ
t ,MXα,µ

t

)]
≈ 1

k

k∑
m=1

F (V (m)(q, n), J (m)(q, n))

where V (m)(q, n) and J (m)(q, n) are independent copies of V (q, n) and J(q, n) under the obvious condition
E[t(q, n)] = n/q = t.

Theoretically, this technique seems very appealing. In practice, however, things are more complicated.
This algorithm is only efficient when it is possible to simulate I(n)

eq and M (n)
eq very quickly, which is not

the case for stable processes. M (n)
eq is of course not the problem, since, by Corollary 2, Chapter VII in [6],

it is an exponential variable with a parameter which is easy to compute. There is, nonetheless no simple
way to simulate I(n)

eq . One can proceed
◦ either with the acceptance-rejection method; but it requires a companion distribution with a

density that behaves like that of I(n)
eq . This is problematic since not only does fIXα,µt

go to
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infinity when x ↓ 0 - this could have been handled with a gamma distribution -, but the tail of
IX

α,µ

t is also of polynomial type (see (A.2) in the Appendix and (2.62 in [5]). There is, to our
knowledge, no easy-to-simulate random variable with such characteristics.

◦ or with the c.d.f. inversion technique, once eq has been drawn. In this case, a truncation of the
series is required and even with an enhanced Newton-Raphson algorithm, this method is quite
lengthy (at least one hundred loops to compute P [IX

α,µ

t ≤ x] for a single value x. . . ).
◦ in both cases, only the density and c.d.f. of IX

α,µ

t is known and only in the driftless case (µ = 0).
The random variable eq must be drawn first. The major issue is that since we can only work with
truncated series, the computation of (A.2) may explode if just one sample value of t d

= eq is too
small.

Even though the Wiener-Hopf Monte Carlo method can prove to be very efficient when the stopped
supremum and infimum are easily simulated, it seems that it is in fact less tractable than classical
Monte-Carlo techniques in the case of stable processes.

4.4. A word on Quasi Monte-Carlo. In order to increase the speed of convergence of the simulation
methods described above, a popular solution is Quasi-Monte Carlo (QMC) and the use of sequences with
low discrepancy. We refer to chapter 5 in [18] for technical details.

The pricing of exotic options using QMC was investigated in [28] (section 5) and [21]. Before we discuss
our numerical results, we wish to comment on these references. Once the parameters of the process are
fixed, two choices remain: the number of simulations N and the number of points in the simulation grid
(n in (4.3), τ in [28] and d in [21]). The maximum value for N is 80,000 in [28] and around 120,000 in
[21]. An intuitive property, which is observed in both articles (see tables 2 in [28] and 5.3 in [21]), is that
the competitiveness of QMC methods decreases as n increases.

In practice, exotic options are discretely monitored. The monitoring can be monthly, weekly, daily,
etc. Therefore, the less frequent the monitoring is, the more relevant the QMC methods become. We
underline that QMC methods require a priori the knowledge of the number of random variables to be
simulated, this is why it is not suited to techniques relying on jump diffusions or on the rejection method.

Using (4.3) and (4.4), have computed the price of an Up and In Put with S0 = 40, B = 45 and K = 50
and of a Down and Out Call with S0 = 50, B = 45 and K = 40. In both cases, we fixed α : 3/2 and
σ = 1/2 in order to compare with the results of the classical Monte-Carlo procedure in Table 3. The
pseudo random numbers were generated by a 2n dimension Sobol sequence: the first n numbers being
used for the uniform variable and the last n numbers for the exponential variable.

We compare MC and QMC methods in the graphs below.
For vanilla payoffs, it is well known (see [18], chapter 5) that the convergence of QMC methods is

O(log(N)n/N) while it is O(N−1/2) for MC methods. Figures 5 and 6 in [28] illustrate this feature.
However, for path-dependent payoffs, the competitiveness of QMC versus MC is (much) less obvious. As
a rule of thumb, it seems that the prices are close to stable for N > 50, 000 in the Sobol case, and when
N > 100, 000 for the classical Monte-Carlo method. QMC thus appears slightly more effective than MC,
but requires a few extra seconds of computation.

4.5. PIDE methods. Another family of methods for computing barrier option prices in exponential
Lévy models consists in solving Partial Integro-Differential Equations (PIDE). A short review of these
techniques is given in the introduction of [23]. When the small jumps are replaced by the Brownian
component, Kudryavstev and Levendorskii show that the error can be quite sizable. In the case of
infinite activity, they strongly recommend not to truncate the small jumps but rather to resort to the
Wiener-Hopf factorization of the underlying Lévy process.

However, these methods do not apply for stable processes, for two reasons:
◦ the Wiener-Hopf factorization for stable processes is very complicated in the general case (see

[24] for instance) and only available in the driftless case. In the spectrally negative case, the
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Random, n=12
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Figure 5. Graph of the UIP price for n ∈ {12, 50, 150, 500} and N ∈ (5 000, 200 000)
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Random, n=12
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Sobol, n=150
Sobol, n=50
Sobol, n=12

Figure 6. Graph of the DOC price for n ∈ {12, 50, 150, 500} and N ∈ (5 000, 200 000)

Wiener-Hopf factors are given by Theorem 4, section VII in [6], but the inverse Lévy-Khintchine
exponent Φ is only known in a completely closed-form for a very limited number of α.

◦ stable processes do not belong to the class of "regular Lévy processes of exponential type" (see
section 2.3 in [23]) and are therefore not suited to these techniques.

5. Conclusion
This article can be used as a toolbox for anyone willing to use the FMLS as a basis for exotic option
pricing. Some exact formulae are provided, but most of the time, approximations should be used for
exotic option pricing. In this case, we strongly recommend our second Monte-Carlo method if no exact
formula exists.
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Appendix A. Technical results and proofs
We recall that Xα is a Lévy process with absolutely continuous jump measure

(A.1) ν(dx) =
1{x<0}

Γ(−α)(−x)1+α
dx

Its Lévy-Khintchine representation is indeed given by

log(E[eσX1 ]) =

∫ 0

−∞
(eσx − 1− σx)ν(dx) = σα

Because its jumps are fully compensated, Xα is a martingale. The prices (2.4) require the knowledge of
the law of the supremum and infimum of Xα

t , or more generally of Xα,µ
t = Xα

t +µt. Some results in this
direction are given in [36], but they are not exactly what we seek here. We further recall the positivity
parameter of Xα:

ρ = P [Xα
t ≥ 0] = (1 + (2− α)/α)/2 =

1

α

Lastly, we recall some notations: It, Mt are the infimum and supremum of the price process St while IXt
and MX

t are the infimum and supremum of the underlying Lévy process. X can be Xα, Xα,µ, X̃α or
X̃α,µ. The two ladder processes are independent copies of Xα, Xα,µ which are used for the pricing on
the secondary market.

In our proofs, we will use the series representation of stable densities extensively. Our main source is
[41], proofs can be found in [42].

Proof of Proposition 3.1. Because r − d = σα, we only need to consider Xα (without any drift). Note
that by the self-similary property of the process, it is sufficient to work with T = 1. Moreover, the same
property yields

P [MXα

1 ≤ x] = P [Tx ≥ 1] = P [(T1)−1/α ≤ x]

hence MXα

1 and (T1)−1/α have the same distribution, where Ta = inf{t > 0, Xα
t > a} is the first passage

time of Xα over a fixed level a > 0.
Because Xα has no positive jumps, then we can apply Theorem 1, section VII from [6] to get that

Ta is a subordinator with characteristic exponent log(E[e−zTa ]) = −az1/α, thus an 1/α-subordinator.
Equation (3.1) then stems from exercise 29.18 in [41] (see also exercise 6.6 in [27]).

Equation (3.2) is a much deeper result, which is the combination of (2.55) in [5] and the fact that for
any process X, inf

0≤t≤T
Xt = − sup

0≤t≤T
−Xt. �

Proof of Theorem 3.1. We start by recalling the densities of −IXα and MXα : for t > 0, x > 0,

(A.2)
P
[
−IXαt ∈ dx

]
dx

=

∞∑
n=1

1

Γ(αn− 1)Γ(1− n+ 1/α)

xαn−2

tn−1/α

(A.3)
P
[
MXα

t ∈ dx
]

dx
=
α

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1)

n!
sin(πn/α)xn−1tn/α

The first identity is simply (2.54) in [5]. For t = 1, the second identity stems from the first term of (3.1)
and equation (2.10.9) from [42]. The self-similarity property gives the formula for any t > 0.

Then, for the Lookback Call, when (s > t),

E
[
min

(
It, e

σIX̃
α

s

)]
=

∫ ∞
0

min(It, Ste
−σx)f−IX̃αs

(x)dx

= It

∫ − log(It/St)/σ

0

f−IX̃αs
(x)dx+ St

∫ ∞
− log(It/St)/σ

e−σxf−IX̃αs
(x)dx
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the first term is computed by integrating term by term (A.2). This is possible if we integrate the first
term of (A.2) separately and then consider a normally converging series. For the second term, we use the
decomposition∫ ∞

− log(It/St)/σ

e−σxf−IX̃αs
(x)dx =

∫ ∞
0

e−σxf−IX̃αs
(x)dx−

∫ − log(It/St)/σ

0

e−σxf−IX̃αs
(x)dx

and, as in Proposition 3.1, ∫ ∞
0

e−σxf−IX̃αs
(x)dx =

αesσ
α

Γ(1/α)

∫ ∞
σs1/α

e−z
α

dz

the second integral can be expressed in terms of the upper incomplete gamma function, but we have
chosen to leave it unchanged in the formula.

The formula for the Lookback Put can be obtained using the exact same steps and the density (A.3).
�

We now provide a formula for the computation of the cumulative distribution function of the running
supremum of Xα,µ.

Theorem A.1. If α is not a rational number, then for x, t > 0 and µ 6= 0,

P
[
MXα,µ

t ≤ x
]

=
α

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1)

n!n
sin(πn/α) 2F1

(
1− n,−n

α
; 1− n

α
;
µt

x

)
t−n/αxn

where 2F1 is the hypergeometric function (see chapter 60 in [37]).

Before proving the theorem, we underline the fact that the function x 7→ 2F1(1−n, y; z;x) is polynomial
with degree n− 1.

Proof. We keep the same notations as above, with Xα replaced by Xα,µ
t = Xα

t +µt. Because P [MXα,µ

t ≤
x] = P [Tx ≥ t], we will work with the first passage time Tx of Xα,µ over the level x > 0. Since Xα,µ has
no positive jumps, we can use Corollary 3, section VII from [6]:

P [Tx ∈ dt]
dt

=
x

t

P [Xα,µ
t ∈ dx]

dx

and the series representation of the density of Xα,µ which is given by 14.28 and 14.30 in [41], yielding

P [Tx ∈ dt]
dt

=
x

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1)

n!
sin(πn/α)t−n/α−1(x− µt)n−1

The integration of this function on a finite interval should be handled carefully. The classical argument,
which invokes the normal convergence of the series, does not hold here. Instead, we consider the partial
sum

Sk(t) =

k∑
n=1

(−1)n−1 x

π

Γ(n/α+ 1)

n!
sin(πn/α)t−n/α−1(x− µt)n−1, t > 0

which makes sense since the Stirling formula implies that the term Γ(n/α + 1)/Γ(n + 1) mitigates any
power term cn at infinity (the term of the series is in fact o(n−γ) for any γ > 1, as n → ∞). For
0 < a < b < ∞, it is plain that not only does Sk(t) → S∞(t) = P [Tx ∈ dt]/dt for any t ∈ [a, b] but
also that |Sk(t)| is bounded for any k ≥ 1 and t ∈ [a, b]. It is thus possible to apply the Arzela-Osgood
theorem (see [30] and the references therein) in order to integrate Sk(t) term by term and let k →∞.

It can then be shown (using 3.194 in [20], or the properties from subsection 2.1.2 in [4]) that the
application

Fn := Fn,α,x,µ : t 7→ αxn−1t−n/α 2F1

(
1− n,−n

α
; 1− n

α
;
µt

x

)
, t > 0
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is one anti-derivative of t 7→ t−n/α−1(x− µt)n−1, which yields

P [Tx ∈ [t, u]] =
x

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1)

n!
sin(πn/α)(Fn(t)− Fn(u))(A.4)

= Gx(t)−Gx(u)(A.5)

with

Gx : u 7→ x

π

∞∑
n=1

(−1)n−1 Γ(n/α+ 1)

n!
sin(πn/α)Fn(u), x, u > 0

where the series is absolutely convergent for any x, u > 0 because of the asymptotics of the Hypergeometric
function (see equation (9) from subsection 2.3.2 in [4]). Equation (A.5) implies that Gx(·) is both bounded
(in [0, 1]) and decreasing. We thus have

lim
u→∞

Gx(u) = P [Tx = +∞] ∈ [0, 1)

which is strictly positive if µ < 0 (Xt → −∞ a.s. when t → ∞) and equal to zero if µ ≥ 0. This can
easily be shown when µ > 0 using Wald’s identity on XTx (implying E[Tx] < ∞ in this case). If µ = 0,
then X oscillates (see Th.12, section VI in [6]) and thus touches x at some point in time. Therefore,
P [Tx ≥ t] = Gx(t). �

Lastly, for the sake of completeness, we wish to point out that a result exists for the supremum
of a drifted spectrally positive stable process (see [35]). It can be used to compute P [Iα,µt ≤ x] for
x < 0. However, because of the negative jumps, Xα,µ

T̂−x
6= −x (T̂−x = inf{t > 0, Xt ≤ −x}) and the

above reasoning does not apply for Down and In Calls. Nevertheless, these formulae can be used to
(numerically) compute the prices of the lookback options in the general case.

If we denote by ε(N) the absolute value of the error induced by a truncation of the series above N −1.
We recall that a quadratic irrational number is an irrational number that is solution to a quadratic
equation with integer coefficients.

Theorem A.2. If α is a quadratic irrational number and µt 6= x, then

ε(N) ≤

Proof. First, since |(−1)n+1 sin(πn/α)| ≤ 1,

(A.6) ε(N) ≤ α

π

∞∑
n=N

Γ(n/α+ 1)

n!n

∣∣∣∣2F1

(
1− n,−n

α
; 1− n

α
;
µt

x

)∣∣∣∣ t−n/αxn.
Then, using the identity xΓ(x) = Γ(x+ 1),∣∣∣∣2F1

(
1− n,−n

α
; 1− n

α
;
µt

x

)∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

(1− n)k
Γ(k − n/α)

Γ(−n/α)

Γ(1− n/α)

Γ(k + 1− n/α)

(µt)k

k!xk

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

(1− n)k
−n/α
k − n/α

(µt)k

k!xk

∣∣∣∣∣
≤
n−1∑
k=0

|(1− n)k|
k!

n

|n− αk|
(µt)k

xk
.(A.7)

We must now resort to a classical result in Diophantine Approximation, which is given in [10] (Th.
1.2) and states that since α is an irrational quadratic number, there exists a constant c(α) such that

|α− n/k| > c(α)

k2
, ∀k, n ∈ N∗.
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Combining this inequality with (A.6) and (A.7), we get

(A.8) ε(N) ≤ α

πc(α)

∞∑
n=N

Γ(n/α+ 1)

n!
t−n/αxn

(
1 +

n−1∑
k=1

|(1− n)k|
(k − 1)!

(µt)k

xk

)
Furthermore,

|(1− n)k|
(k − 1)!

=
(n− 1)× (n− 2)× · · · × (n− k)

1× 2× · · · × (k − 1)

=
(n− 1)!

(k − 1)!(n− k − 1)!

=
Γ(n)

Γ(k)Γ(n− k)
,(A.9)

which reaches its maximum at k = n/2, and for µt/x 6= 1, (A.8) reduces to

(A.10) ε(N) ≤ α

πc(α)

∞∑
n=N

Γ(n/α+ 1)

Γ(n/2)2
t−n/αxn

(
(µt/x)n − 1

µt/x− 1

)
.

Now, as z → +∞, Γ(z) ∼
√

2π/e(z/e)z−1/2 (see section 1.18 in [4]), which implies

Γ(n/α+ 1)

Γ(n/2)2
=
n

α

Γ(n/α)

Γ(n/2)2
∼
√
e

α
√

2π

(2e)n

(αe)n/α
nn/α+1−n, n→∞.

Since for µt/x 6= 1,

(2e)n

(αe)n/α
t−n/αxn

(
(µt/x)n − 1

µt/x− 1

)
n(n/α+1−n)/2 → 0, n→∞,

there is N∗ such that

(A.11)
1

πc(α)

√
e√

2π

(2e)n

(αe)n/α
t−n/αxn

(
(µt/x)n − 1

µt/x− 1

)
n(n/α+1−n)/2 ≤ 1, ∀n ≥ N∗

and hence

∀N ≥ N∗, ε(N) ≤
∞∑
n=N

n(n/α+1−n)/2

≤
∞∑
n=N

N (n/α+1−n)/2

≤ N1+N
2 (−1+1/α)

√
N −

√
N

1/α

If µt/x = 1, then, in (A.10) and (A.11), (µt/x)n−1
µt/x−1 is simply replaced replaced by n.

�
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