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Abstract. We compare twelve estimators of the covariance matrix: the sample covariance matrix, the identity
matrix, the constant-correlation estimator, three estimators derived from an explicit factor model, three obtained
from an implicit factor model, and three shrunk estimators. Following the literature, we conduct the comparison
by computing the volatility of estimated Minimum Variance portfolios. We do this in two frameworks: first, an
ideal situation where the true covariance matrix would be known, and second, a real-world situation where it
is unknown. In each of these two cases, we perform the tests with and without short-sales constraints, and we
assess the impact of the universe and sample sizes on the results. Our findings are in line with those of Ledoit
and Wolf (2003), in that we confirm that in the absence of short-sales constraints, shrunk estimators lead in
general to the lowest volatilities. With long-only constraints, however, their performance is similar to that of
principal component estimators. Moreover, the latter estimators tend to imply lower levels of turnover, which
is an important practical consideration.

1. Introduction

Since the seminal work of Markowitz (1952) and Sharpe (1964), the Mean-Variance paradigm has been at
the heart of Modern Portfolio Theory. Within this framework, the computation of efficient portfolios requires
two key inputs: the vector of expected excess returns and the covariance matrix. Knowing these parameters,
the investor is able to compute the set of efficient portfolios, that is the set of those portfolios that achieve the
highest expected return for a given level of risk. Which efficient portfolio is selected depends on the amount of
risk that the agent is willing to take, which is itself a function of his/her risk aversion. If short sales are allowed,
the efficient frontier is generated by combining the minimum variance (MV) portfolio, which is the one chosen
by investors with infinite risk aversion, and the maximum Sharpe ratio (MSR) portfolio. It is well known that
the weights of these two strategies admit the following expressions:

(1) wMV = Σ−11N

1′
NΣ−11N

,

and:

(2) wMSR = Σ−1µ

1′
NΣ−1µ

.

In these expressions, Σ is covariance matrix, µ is the vector of expected excess returns, 1N is the N -dimensional
vector of ones, and for each k = 1, ..., N , wMV

k and wMSR
k are the proportions of wealth which should be invested

in asset k, in the MV and the MSR portfolio respectively.
A notorious problem with these strategies is that they rely on the unobservable parameters Σ and µ. Hence,

they all involve estimation risk, in the sense that the estimated parameters differ from the true values. Plugging
approximations into (1) or (2) therefore leads to non-optimal weights. In particular, the vector µ is particularly
hard to estimate. Numerous papers have shown that the use of historical averages for estimating expected returns
implies poor out-of-sample performance (see Klein and Bawa (1976), Jobson and Korkie (1980), Merton (1980),
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Jorion (1985), Jorion (1991), Best and Grauer (1991), Chopra and Ziemba (1993), Britten-Jones (1999), Kondor
et al. (2007)). The considerable difficulty to estimate µ accurately has drawn interest for weighting schemes that
do not use this parameter. These diversification schemes include maximum decorrelation, risk parity (Maillard
et al., 2010) and maximum diversification (Choueifaty and Coignard, 2008). The corresponding portfolios can
be computed with the sole knowledge of Σ, which makes them of course insensitive to the estimation errors in
µ. However, choosing one of these targets involves a loss in Sharpe ratio with respect to the choice of the MSR
portfolio, unless Σ and µ satisfy specific “optimality conditions”.1

But estimation errors in the covariance matrix can be large too, if the universe is large and the sample
available to estimate parameters is small: the ratio N/T , where N is the number of assets and T is the number
of observations, plays an important role in determining the precision of the sample estimator (see Kan and
Zhou (2007) and Fan et al. (2008) for rigorous proofs, as well as El Karoui (2010) and Kondor et al. (2007) for
further theoretical and empirical insights on the subject). When the ratio N/T is large, Kan and Zhou (2007)
even show that estimation errors in the sample covariance matrix contribute more than estimation errors in
expected returns to the loss of efficiency of the proxied mean-variance efficient portfolio with respect to the
true MSR portfolio. Furthermore, if N/T is less than one, the sample estimator is a singular matrix, which
makes it impossible to compute a MV portfolio through (1). It is only when the sample size is large relative
to the universe size (say, T is at least equal to 3N), that the sample covariance matrix is suitable for portfolio
optimization, as was shown in Pantaleo et al. (2011). In other situations, Σ̂ should be regularized so as to
mitigate the estimation risk. A review of regularization techniques proposed in the literature is presented in
Section 2.

The purpose of this paper is to make a comparison between different estimators for the covariance matrix,
which is the common input to MV, risk parity and maximum diversification portfolios. Specifically, we consider
twelve estimators of the covariance matrix and their corresponding estimated MV portfolios:

- the sample estimator;
- the constant-correlation estimator, which assumes that all assets have the same pairs of correlation;
- the (scaled) identity matrix, which assumes that all assets are independent and have the same variance.

The MV portfolio is then equally weighted;
- two single-factor estimators, in which the factor is taken to be either the return on an equally-weighted

portfolio of all assets, or the return on a cap-weighted portfolio. These estimators are denoted with
FEW and FCW;

- the three-factor estimator obtained from the Fama-French model, denoted with FFF;
- three shrunk estimators, that were introduced by Ledoit and Wolf in a series of paper in 2003 and 2004:

they shrink the sample covariance matrix respectively towards the identity matrix, the equally-weighted
single-factor matrix, and the constant-correlation matrix. These estimators are denoted with LWI, LWF
and LWC;

- three estimators formed with principal component analysis, with different choices for the number of
factors to be retained. These estimators are denoted with PCP, PCL and PCR.

These estimators are presented in details in Section 3. It should be noted that while inverting an estimator
of Σ is the most obvious option to estimate minimum variance weights via (1), other techniques are available:

1The optimality conditions of a given portfolio are the conditions under which this portfolio coincides with the MSR portfolio. For
instance, the MV portfolio equals the MSR one if, and only if, all assets have the same expected excess returns.
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i) a direct estimation of Σ−1 (see Stevens (1998), Kourtis et al. (2012) and DeMiguel et al. (2013)), or ii) a
direct estimation of the weights wMV

k (see Clarke et al. (2013) and Frahm and Memmel (2010)). We leave these
approaches outside the scope of this article, because they are too specific to the estimation of the MV portfolio,
while an estimated covariance matrix can be used in many contexts: computation of other efficient portfolios
or of “heuristic” portfolios such as risk parity and maximum diversification, computation of ex-ante variance or
tracking error, etc.

Following the literature, we rank estimators by measuring the out-of-sample variance of estimated MV port-
folios. We do this in two frameworks. In the first one, we simulate stock returns with a known covariance
matrix, so that we are able to compute the ex-ante volatility of each portfolio, that is the volatility that would
be achieved on average over an infinite number of paths. In the second situation, we use real financial data,
which implies that the data-generating process and the true covariance matrix are unknown: we thus compute
the out-of-sample volatility of each portfolio along the historical path. Because short-sales constraints are com-
monly imposed in practice, we consider long-only portfolios in addition to long-short ones. We also report the
turnovers of the strategies: the turnover by itself is not an indicator of the accuracy of an estimator, but it is
important for practitioners because it gives a sense of the magnitude of transaction costs.

Our main empirical findings can be summarized as follows:

(1) With simulated data, the ranking of estimators depends on the tails of the underlying distribution. If
tails are thin, then two shrunk estimators (LWC and LWF) and one principal component estimator
(PCP) display the best performances. But a fat-tail distribution is arguably a better representation of
the observed distribution of stock returns. In this situation, one shrunk estimator (denoted with LWI)
and another principal component estimator (PCR) stand out;

(2) Using real financial data, we obtain results consistent with those Ledoit and Wolf (2003): in a large
universe (such as the S&P 500 universe) and assuming that short sales are allowed, the estimator
shrunk towards the single-factor estimator implies an out-of-sample volatility which is lower than that
associated with a principal component estimator (PCL), but the latter estimator leads to lower levels
of turnover. We also recover results from Jagannathan and Ma (2003) regarding the impact of weight
constraints;

(3) We complement this analysis by imposing short-sales constraints, which are often applied in practice.
Under realistic implementation conditions (that is, computation of nonnegative weights by rescaling of
the long-short weights), the constant-correlation estimator implies good results: it implies low out-of-
sample volatilities and low levels of turnover. However, since this estimator has poor performances in
the Monte-Carlo study with the Student distributions, we take these good results cautiously. But the
principal component estimator denoted with PCR does not imply much higher volatility, while keeping
the turnover reasonable.

Overall, the PCR estimator, in which the number of factors is chosen according to Random Matrix Theory
(Marchenko and Pastur, 1967), displays good results in all tested situations. It is not the best in all of them,
but the dominating estimators vary from one case to the other.

The remainder of the article is structured as follows. In Section 2, we review possible approaches to reducing
estimation risk, in particular factor models and shrinkage techniques. In Section 3, we give a detailed description
of the twelve estimators of the covariance matrix that we study in this paper, and which are representative of the
available regularization methods surveyed in Section 2. Section 4 is devoted to the comparison of the estimators
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in the hypothetical situation where the true covariance matrix and the true asset return distribution are known.
Section 5 provides a similar comparison, but uses real financial data, for which the true covariance matrix is
unknown. In both cases, we will assess the estimation errors via the (ex-ante or out-of-sample) volatilities of
estimated MV portfolios. We summarize our results and conclude in Section 6.

2. Review of regularization techniques for covariance matrix

The literature devoted to covariance matrix estimation is extensive. Recently, many new results and inno-
vative approaches have blossomed, with applications to various fields (Finance, Statistics, Machine Learning,
Genetics, etc.). A non exhaustive sample includes Bai and Shi (2011), Fan et al. (2011), Ledoit and Wolf
(2012) and Mazumder and Hastie (2012), as well as the references therein. In this section, we wish to high-
light the methods that have been developed with a view towards portfolio construction and admit an financial
interpretation.

First, because Σ̂ is a convergent estimator of Σ, the sample estimator can be improved by increasing the
sample size. This can be done either by considering older observations (going back further in time), or by using
more frequent observations (weekly or daily returns instead of monthly or quarterly returns). However, long
datasets are not always available for all stocks, and even if they were, their usage would raise questions as to
the stationarity of parameters: indeed, the covariance structure may have varied over time, so that old data is
not appropriate to estimate recent covariances. On the other hand, the use of daily data to estimate covariances
has been shown to improve significantly the sample estimator (see e.g. Jagannathan and Ma (2003)). But
high-frequency data raises specific issues, including asynchronous price problems as well as bid-ask bounces. In
our studies below, we will therefore use weekly data.

Once the universe and the sample sizes have been specified, there are two alternative approaches which aim
at reducing estimation risk. The first one focuses on the improvement of the input (Σ̂), while the second one
intends to regularize the outputs, that is, the estimated optimal weights. For instance, imposing constraints,
such as bounds on the weights, can help to reduce the risk of optimal portfolios, as was shown in the seminal
article of Jagannathan and Ma (2003). In this case, the MV portfolio is the solution of the following optimization
program:

(3)


min
w

w′Σw

s.t. w′1N = 1
lb ≤ w ≤ ub

,

where the second line represents the budget constraint (the portfolio must be fully invested) and the third line
imposes the upper and lower bounds on the weights. Other robustification techniques include L1 and L2 norm
constraints (DeMiguel et al., 2009) and shrinkage or mixing of weights (see Kan and Zhou (2007), Frahm and
Memmel (2010), Tu and Zhou (2011) and Candelon et al. (2012))2. One advantage of these techniques is that
they obviously help to address a notorious problem of wMV : the estimated minimum variance weights usually
contain many large negative values. Even if such extreme short positions can be justified by the presence of
a dominant factor in returns (Green and Hollifield, 1992), they are hardly implementable in practice. The
regularizations contribute to reduce both the number and the magnitude of these negative weights.

2The L1 norm of w is equal to the sum of absolute weights,
∑N

i=1 |wi|, and its L2 norm is equal to the square root of the sum of
squared weights,

√
w′w.
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In this article, we focus on the first approach, that is, the improvement of the estimated covariance matrix.
When N/T is not close to zero, one of the main drawbacks of Σ̂ is that it is widely dispersed: even though,
on average, Σ̂ is equal to Σ (the sample estimator is unbiased), there are often outliers for which Σ̂ is very
different from Σ. These outliers are associated with large estimation risks and should be avoided. A reasonable
compromise is to allow an estimator to have a nonzero bias in order to strongly reduce its variance. This trade-
off between bias and variance is at the core of the two families of estimators that we present below: structured
estimators and shrunk estimators.

The structured approach aims at reducing the dimensionality of the problem. The number of covariances
to estimate within a universe of size N is N(N + 1)/2, which is as a quadratic function of N . An option to
reduce the number of parameters to estimate is to assume a constant correlation across stocks (the "overall
mean model" of Elton and Gruber (1973)), so that the only parameters to be estimated are the volatilities.
Factor estimators also alleviate the curse of dimensionality. Stock returns are assumed to be generated by a
factor model, as in the Arbitrage Pricing Theory of Ross (1976):

R
(i)
t = α(i) + β(i)′

Ft + ε
(i)
t , for i = 1, ..., N,

where Ft is a vector of K factor values, and the error terms are uncorrelated from the factors and uncorrelated
across stocks. The covariance matrix is thus given by:

(4) Σ = β′ΣFβ + Σε.

The number of parameters to estimate is thus: NK betas, plus K(K + 1)/2 factor covariances, plus N idiosyn-
cratic variances. It is linear in N , while the sample estimator of Σ contains N(N + 1)/2 unrelated coefficients,
which is a quadratic function of N . Imposing the factor structure on the estimator may introduce a bias, but
will at the same time lower its variance because there will be fewer parameters to estimate.

The choice of the factors in this approach is of crucial importance. In the context of equity portfolios, usual
models are the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and the three-factor Fama-French model
introduced in Fama and French (1992). Factors are explicit in the sense that they are exogenously given, as
opposed to being derived from the constituents’ returns:3 the market factor in the CAPM, and the size and
the value factors in the Fama-French model. All of these models involve misspecification risk: in particular,
the derivation of (4) strongly relies on the orthogonality between the residuals and the factors, a property that
is not satisfied if relevant factors are omitted. On the contrary, implicit factor models consider factors which
can be derived from the data only, without any assumption on the link between returns and exogenous factors.
This avoids misspecification risk: for instance, with principal component analysis (PCA), the residuals from a
K-factor model where K is the number of selected implicit factors are orthogonal to the factors by construction.
A second advantage of implicit approaches is that they do not require other data than returns, while exogenous
models do (for instance, fundamental data is needed to compute the Fama-French value factor). Another asset,
which is specific to the PCA technique, is that the implicit factors are ranked according to their explanatory
power with respect to historical returns. However, implicit approaches also have shortcomings: implicit factors
may lack a financial interpretation, and the loadings of the principal component factors on the returns are often
unstable.

The second family of robustification methods we are interested in relies on statistical shrinkage. It was first
introduced in a financial setting by Barry (1974) for the Bayesian estimation of expected returns and was applied

3Exogenous factors are not necessarily observable. The classical example is the market portfolio of the CAPM (Roll, 1977).
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to covariance matrix estimation by Frost and Savarino (1986) (see also Brown (1979)). The core idea of this
technique is to combine two estimators so as to optimize the bias-variance trade-off. The first estimator should
have zero bias but possibly a large variance while the second estimator must have a small variance, possibly
at the cost of nonzero bias. The optimal linear combination of the two estimators will smaller bias than the
second estimator and smaller variance than the first one. Consequently, the couple bias-variance will be more
balanced. It is customary to take the sample covariance matrix as the first estimator. However, for the second
estimator, no consensus exists among academicians or practitioners. A possible choice is the scaled identity
matrix which may have a large bias but requires only one parameter to be estimated: the average variance
of the stocks. Another popular choice is the single-factor estimator, defined as the estimator of the form (4)
obtained by taking the average of stock returns as the single factor (Ledoit and Wolf, 2003). In this study, we
also consider a cap-weighted version of the single factor, which is the usual proxy for the market portfolio of
Sharpe’s CAPM (Sharpe, 1964).

Table 1 summarizes the aforementioned regularization techniques as well as the related literature.

Improving the input (covariance matrix) Regularizing the output (weights)
Factor Models Shrinkage

Explicit model (CAPM, Fama-French): Towards factor model covariance matrix: Norm constraints:
Sharpe (1963) Ledoit and Wolf (2003) DeMiguel et al. (2009)

Fan et al. (2008)
Implicit model (Principal component analysis): Towards constant correlation covariance matrix: Lower and upper bounds:

Laloux et al. (2000) Ledoit and Wolf (2004a) Jagannathan and Ma (2003)
Akemann et al. (2011) Chapter 40

Towards identity matrix: Shrinkage / Mixing:
Ledoit and Wolf (2004b) Kan and Zhou (2007)

Sancetta (2008) Frahm and Memmel (2010)
Chen et al. (2011) Tu and Zhou (2011)

Candelon et al. (2012)
Table 1. Summary of regularization methods studied in the literature.

3. Specification of the competing families of estimators

3.1. The benchmarks estimators. In order to assess the performance of the enhanced estimators of Σ

described below, we compare them to three simple benchmark estimators. The first one is the sample covariance.
If R is the (T × N) matrix of returns and R̄ the (1 × N) vector of the stock’s average returns, then the sample
covariance matrix is defined as follows.

Definition 3.1. The sample estimator, denoted by SAM is computed as

Σ̂ = 1
T − 1

R′R − T

T − 1
R̄′R̄.

This estimator can be used to compute a unique minimum variance portfolio as long as it is nonsingular:
this condition is mathematically satisfied if, and only if, the universe size, N , is strictly smaller than the sample
size, T . But in practice, having N close to T results in a ill-conditioned matrix, which is close to singular.

The second benchmark estimator is the constant correlation covariance matrix, which was introduced by
Elton and Gruber (1973). In this case, the structure of the matrix is driven by the restriction that all pairwise
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correlations between assets are equal. In details, if we denote σ̂i,j the elements of the sample covariance matrix
and ĉi,j those of the sample correlation matrix, the average sample correlation is computed as:

(5) r̂ = 2
N(N − 1)

N−1∑
i=1

N∑
j=i+1

ĉi,j ,

and the constant correlation covariance matrix is then given by:

(6) Σ̂CC = [σ̂CC
i,j ]ij , with σ̂CC

i,j =

{
σ̂CC

i,i = σ̂i,i, i = j

σ̂CC
i,j = r̂

√
σ̂i,iσ̂j,j , i ̸= j

.

Thus, the estimator depends on the sample variances and the average correlation, that is N + 1 parameters.
Note that the realism of the constant correlation assumption depends on the universe: it is defensible within a
single asset class, but not for portfolios encompassing many different asset classes.

Definition 3.2. The constant correlation covariance matrix estimator, CC, will be computed as Σ̂CC .

Lastly, for the sake of completeness and in order to verify that all estimators tend to bring an improvement
over the situation where no parameter is estimated, we will test the identity matrix as an estimator for the
covariance matrix. Using this estimator amounts to assuming that all correlations are zero and that all variances
are equal to one. The assumption of unit variances may seem inappropriate, and one might instead propose the
identity matrix multiplied by the average variance of stocks as an estimator. But for the purpose of computing
MV portfolios, the value of the constant variance is unimportant, as can be seen from (1). Thus, we define the
estimator as follows:

Definition 3.3. The ID estimator of the covariance matrix is the scaled identity matrix.

Of course, the use of this estimator leads to allocating equal weights to all constituents.

3.2. Factor Models.

3.2.1. Introduction. The expression for the covariance matrix in a multi-factor model has been given in Section
2. If we write β̂ for the (N × K) concatenation of all of the least-squares estimators of β(i) (in the regression
model (8)), then the factor estimator of the covariance matrix is

(7) Σ̂F AC = β̂Σ̂F β̂′ + Σ̂ε,

where Σ̂F is the sample covariance matrix of the factors and Σ̂ε is the diagonal matrix containing the variances
of the residuals of the regression (8).

3.2.2. Explicit factors. We start by assuming that the factors have been determined exogenously, e.g. by an
asset pricing model (CAPM or Fama-French). Choosing the CAPM, for instance, leads to the single-factor
covariance estimator. In this setting, each asset’s return is generated by the following linear model:

(8) R
(i)
t = α(i) + β(i)R

(0)
t + ε

(i)
t ,

where the superscripts denote the asset indices (zero being the market factor) and the residuals ε
(i)
t are uncor-

related to market returns and to one another. The covariance matrix implied by this model is

(9) Σ̂F AC = v̂(F )β̂β̂′ + Σ̂ε,
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where v̂(F ) is the sample variance of market returns, β̂ is the vector of the OLS estimators of the β(i) and
Σ̂ε is the diagonal matrix containing the corresponding variances of the residuals. Note that Σ̂F AC relies on
the estimation of 2N + 1 numbers (N for β̂, N variances of residuals and v̂(F )), which is much smaller than
N(N + 1)/2 whenever the investment universe is large.

In practice, the market factor R(0) must be approximated by the returns on a stock index. We consider
two proxies: the equally-weighted portfolio of the constituents, and the cap-weighted index, both of which are
available on Kenneth French’s website. This gives rise to two different estimators.

Definition 3.4. The Equally-Weighted single-factor covariance matrix estimator, FEW, will be computed as
Σ̂F AC , with the market factor being an equally-weighted portfolio of the constituents.

Definition 3.5. The Cap-Weighted single-factor covariance matrix estimator, FCW, will be computed as Σ̂F AC ,
with the market factor being a cap-weighted portfolios of all constituents.

A refinement of the one-factor model is the three-factor Fama-French model. In Regression (8), the HML
and SMB factors are added and the estimator takes the more general form (7), where β has dimension (N × 3).

Definition 3.6. The Fama-French factor estimator for the covariance matrix, denoted as FFF, will be computed
as in (7), where the betas are measured with respect to the three Fama-French factors.

The use of this model is expected to bring an improvement over the use of a single-factor model, since three
factors will mechanically explain a higher fraction of the total variance. On the other hand, it requires the
estimation of more parameters.

3.2.3. Implicit factors. Implicit factors can be extracted from the data in numerous ways. We focus first on
the extraction by eigendecomposition of the sample covariance matrix Σ̂, that is the principal component
analysis (PCA) of the matrix. By construction, the factors are orthogonal. They are usually sorted on their
variances η1 ≥ · · · ≥ ηN , the ηi-s being the eigenvalues of the covariance matrix. In other words, the first
factor relates to the largest eigenvalue and the last factor to the smallest one. Factor variances also have a
statistical interpretation: the ratio of λi to the sum of eigenvalues, that is the ratio of λi to the sum of return
variances, represents the fraction of total variance explained by the ith factor. Hence the first factor is the
one that explains the largest fraction of the total variance, while the latter one is merely noise. The selection
procedure then reduces to choosing the appropriate number of factors: selecting a low number of factors reduces
the explanatory power of the model, but retaining too many of them leads to retaining factors that are perhaps
insignificant. This topic has generated a vast literature which is still expanding. Old tests (see Amemiya and
Anderson (1990) for instance) tend to favor models with a high number of factors, but more recent criteria use
regularization functions in order penalize models with large numbers of factors, as in Bai and Ng (2002).

The first principal component (PC) estimator we wish to test is based on this latter approach, which we
detail now. We start by assuming that the PCA decomposition of the sample covariance matrix is known and
that eigenvalues are ranked in decreasing order. Our objective is to obtain an optimal number of factors k∗. We
perform N least-squares regressions of the form (8), where Ft is successively the vector of the first k factors,
and k grows from 1 to N . We write εk for the corresponding vectors of (T × 1) residuals (we recall that T

stands for the sample size). Bai and Ng (2002) propose the following criterion for k∗:

(10) k∗ = argmin
k

{
log(ε′

kεk) + k

(
N + T

NT

)
log
(

NT

N + T

)}
.
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The idea is to minimize the sum of squared residuals with a penalty for high values of k. Originally, Bai and
Ng (2002) propose to penalize simply the sum of squared residuals, ε′

kεk, but a scaling problem occurs, which
is solved by taking the logarithm. For the sake of parsimony, we impose in our implementation of the criterion
(10) that the integer k should not be greater than ten. Based on this criterion, we build our first principal
component estimator.

Definition 3.7. The PCP (for Principal Component selection based on Penalization) estimator of the covari-
ance matrix is computed as (7), where the number of factors is the k∗ defined in (10), subject to the restriction
that k should be smaller than or equal to ten.

The second PC estimator we investigate was proposed in Laloux et al. (2000); extensions can be found in
Akemann et al. (2011), Chapter 40. The starting point is the eigendecomposition of the sample correlation
matrix Ω̂:

(11) Ω̂ = PΛP ′,

where Λ is the diagonal matrix of eigenvalues λ1 ≥ · · · ≥ λN and P is an orthogonal matrix.4. Once again,
the question is how many factors should be kept, in order to achieve a balance between explanatory power and
statistical significance. An answer is provided by an elegant result in Random Matrix Theory (RMT), which
characterizes the distribution of the eigenvalues when both N and T increase to infinity. This theorem, proved
in Marchenko and Pastur (1967) states that when observations are independent and have the same stationary
distribution with unit variance and N and the ratio N/T converges to a constant q different from 1, then,
asymptotically, all nonzero eigenvalues of Ω̂ will lie in the interval

(12) I = [(1 − √
q)2, (1 + √

q)2].

The assumption that all assets have unit variance explains why this result is applied in the context of the
eigendecomposition of the correlation matrix, not that of the covariance matrix. We also highlight the fact that
it is an asymptotic result which holds only for N and T growing to infinity. In practice, it is applied for finite
universes and samples, and the constant q is estimated as N/T . The upper bound of the interval I is estimated
accordingly as νN,T = (1 +

√
N/T )2.

Surprisingly, when dealing with financial sample correlation matrices, a strong deviation from this theorem
occurs: the largest eigenvalue lies considerably above the estimated theoretical upper bound, which is νN,T .
This can be explained by the fact that the investment universe is strongly driven by one factor, the “market
factor”, which accounts for a substantial proportion of the total variance of the universe (often more than
75% in the US equity market – see Brown (1989)). Depending on the number of assets under consideration, a
few other eigenvalues may lie outside the theoretical bounds of the interval defined in (12). This discrepancy
between the theoretical and the empirical distribution of eigenvalues is viewed as signal in Laloux et al. (2000).
They consider that the gap between what is expected and what is observed is relevant information, while the
conforming eigenvalues (i.e., those which lie within the theoretical bounds), are simply noise and should be
discarded because they carry no useful information. Accordingly, they propose the following regularization of
the covariance matrix.

Definition 3.8. The PCR (for Principal Component selection based on RMT) estimator of the covariance
matrix is computed by the following procedure:

4This means that the inverse of P is the transpose of P .
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(1) factorize the correlation matrix Ω̂ as Ω̂ = PΛP ′, with orthogonal P and diagonal Λ,
(2) define the diagonal matrix Λ∗ with the diagonal elements given by: λ∗

i = λi if λi > νN,T , and λ∗
i = 0

otherwise,
(3) compute the matrix product Ω̂∗ = PΛ∗P ′,
(4) set the diagonal of Ω̂∗ to one: ρ̂∗

i,i = 1 for i = 1, ..., N ,
(5) finally, the PCR estimator of the covariance matrix is obtained by multiplying the robustified correlation

matrix by the sample volatilities of assets:

(13) Σ̂∗ =


σ̂1,1 0 0

0
. . . 0

0 0 σ̂N,N

× Ω̂∗ ×


σ̂1,1 0 0

0
. . . 0

0 0 σ̂N,N

 .

This robustification of Σ̂ was first mentioned in Rosenow et al. (2002) and calls for a few remarks. First, Step
(2) involves the choice of a degree of freedom, which is the common value assigned to the eigenvalues that lie
below the bound νN,T . Akemann et al. (2011) (Chapter 40) and Laloux et al. (2000) propose that the average
value of the discarded eigenvalues, while we use zero in this article. In unreported results, we have checked that
it makes only a marginal difference whether we choose zero or the average of the smallest eigenvalues (Pantaleo
et al. (2011) also show empirically that the difference is particularly small when T is much larger than N).
Second, Steps (4) and (5) will ensure not only that the final estimator preserves the sample variances, but also
that it is invertible and that its eigenvalues are less dispersed than those of Σ̂. Overall, this eigenvalue selection
procedure will reduce the amplitude of the off-diagonal elements of Σ̂, while maintaining its diagonal values.
This effect is similar to that of bounds on weights (see Jagannathan and Ma (2003)): lower bounds shrink the
largest covariances downwards, while upper bounds shrink the smallest values upwards. The PCR estimator
is the one used by Amenc et al. (2011) as well as by Scientific Beta (http://www.scientificbeta.com) for the
construction of smart beta indices that require the estimation of the covariance matrix.

Lastly, for the sake of completeness, we mention that other techniques have been developed in order to specify
the number of factors to be retained. For instance, Connor and Korajczyk (1993) and Ahn and Horenstein (2013)
propose alternative computations. However, the authors of the latter article point that their method does not
apply in contexts where “a dominant factor (in terms of explanatory power) exists”. The former article finds
evidence for one to six factors in financial markets. In our study on out-of-sample performance, the PCR
estimator selects one to seven factors, depending on the size of the investment universe, which varies from six
to five hundred assets. Therefore, it seems that these two selection criteria give consistently close results.

Both the PCP and the PCR estimator allow the number of factors to fluctuate over time, as the PCA of the
covariance or correlation matrix is performed on different windows. This is especially true for large investment
universes. But one may be surprised by the assertion that the S&P 500 constituents would be driven by one or
two factors during the 1960s and by five to seven factors during the 2000s. Thus, our last estimator is tailored
so as to impose a time-invariant number of factors. Nevertheless, this number of factors should depend on the
number of assets under consideration. If several studies have shown that it is likely that large equity universes
are driven by approximately six factors (see Trzcinka (1986), Connor and Korajczyk (1993), Alessi et al. (2010)
and in a slightly different context, Roll and Ross (1980)), it seems unlikely that six factors are required to model
a ten-stock universe. We therefore propose the following heuristic threshold.



ESTIMATING COVARIANCE MATRICES FOR PORTFOLIO OPTIMIZATION 11

Definition 3.9. The PCL (for Principal Component selection via the Logarithmic criterion) estimator is the
factor estimator of the form (7) where the factors are the first k factors from the PCA of the covariance matrix,
and k is the integer part of log N .

For instance, this criterion leads to retaining six factors for large universes, with five hundred of thousand
assets, and two factors for a ten-stock universe.

Overall, PC estimators have the advantage of being computationally simple, because they require only a
PCA factorization and a few simple matrix manipulations. However, it is not clear whether they are closer to
Σ (for instance in the sense of quadratic distance) than the sample estimator. This is because the PC selection
technique does not explicitly seek to minimize the distance between Σ and the proposed estimator.

3.3. The shrinkage approach.

3.3.1. Introduction. The second family of methods relies on a statistical shrinkage of Σ̂. The rationale behind
this technique is the following. The sample covariance matrix Σ̂ has no bias but a lot of variance, therefore it
seems appealing to combine it with an estimator with a nonzero bias, but little variance, known as the shrinkage
target and denoted as Σ⃗. In this case, the regularized estimator takes the form

(14) Σ̂∗
α = (1 − α)Σ̂ + αΣ⃗.

The shrinkage target assumes a strong structure in the data and thus has a small variance, but it has possibly
a large bias if the assumed structure is actually not present. The parameter α (shrinkage intensity) is chosen so
as to ensure that the distance between Σ and Σ̂∗

α is statistically as small as possible. Very often, the distance
is assessed through a matrix norm || · ||5 and the optimal intensity is defined by

α∗ = argmin
a

E
[∥∥∥Σ − Σ̂∗

a

∥∥∥2
]

.

In practice, α∗ depends on the true, unknown covariance matrix, and can only be estimated (the expressions for
the estimators are given in the appendix). It also depends on the shrinkage target. In what follows, we present
in details the three targets that we test in this paper, and which are borrowed from a series of papers by Ledoit
and Wolf: the single-factor covariance matrix (Ledoit and Wolf, 2003), the scaled identity matrix (Ledoit and
Wolf, 2004b) and the constant correlation covariance matrix (Ledoit and Wolf, 2004a).

3.3.2. The three shrinkage estimators. The first estimator takes the single-factor covariance matrix as the shrink-
age target.

Definition 3.10. The LWF estimator is the estimator of the form (14) in which the target is the factor estimator
Σ̂F AC defined in (9). The corresponding estimated intensity (α∗) is given in Ledoit and Wolf (2003) and is
recalled in Appendix A.1.

The second estimator takes the constant-correlation as shrinkage target.

Definition 3.11. The LWC estimator is the estimator of the form (14) in which the target is the constant-
correlation matrix Σ̂CC . The corresponding estimated intensity (α∗) is given in Ledoit and Wolf (2004a) and
is recalled in Appendix A.2.

5For instance, the spectral, Frobenius or max norm.
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The last shrinkage target is simply a multiple of the identity matrix. In order for Σ̂ and Σ⃗ to have a
comparable scale, we set in this case Σ⃗ = σ̄2IN , where IN is the identity matrix of size N , and σ̄2 is the average
of sample variances.

Definition 3.12. The LWI estimator is the estimator of the form (14) in which the target is the scaled identity
matrix. The corresponding estimated intensity is given in Ledoit and Wolf (2004b) and is recalled in Appendix
A.3.

3.3.3. Comments. The estimators LWF, LWI and LWC have become references in the literature on portfolio
optimization. For instance, in the past few years, the shrinkage towards the single factor covariance matrix
was used as benchmark in the following articles: Barras (2007), DeMiguel et al. (2009), Liu (2009), Behr et al.
(2012), Santos et al. (2012) – a list which is far from exhaustive.

We will therefore consider the above three shrinkage schemes for Σ̂. Since the seminal article of Ledoit
and Wolf (2003), several extensions have blossomed (see e.g. Sancetta (2008), Chen et al. (2011), Candelon
et al. (2012), to name but a few). To the best of our knowledge, no extensive comparative study has yet
demonstrated the superiority of these extensions over the original methods of Ledoit and Wolf in the field of
portfolio optimization. We will therefore focus on these three estimators.

Shrinkage approaches have connections with other regularization techniques. First, the shrinkage towards
the scaled identity matrix (LWI) amounts to shrinking the eigenvalues of Σ̂ towards their grand mean and
hence reduces their dispersion. Therefore, the effect of this particular method is similar to that of Step (4)
in Definition 3.8. Second, Jagannathan and Ma (2003) proved that the solution to the variance minimization
problem (3) is equal to the solution of the same problem where the bounds on weights are removed and the
covariance matrix Σ is replaced by a shrunk version of Σ (specifically, low covariances are increased, and high
covariances are decreased). Third, if norm constraints are used instead of bound constraints, then DeMiguel
et al. (2009) show that the optimal weights can also be interpreted as the solution to an unconstrained variance
minimization problem where the sample covariance matrix is replaced by a shrunk estimator. These examples
show that shrinkage estimators encompass many forms of regularizations.

The shrinkage estimators have two main advantages. First, for standard shrinkage targets, such as those
listed above, the optimal intensity can be approximated with a closed-form expression, and no optimization is
required to estimate it. Second, these estimators are explicitly designed to minimize the distance from the true
matrix within the family of estimators of the form (14). In this sense, they can be considered as optimal, which
was not the case for the PC estimators. But a drawback of shrinkage estimators is that they depend on the
choice of a shrinkage target, which is after all arbitrary.

We are now equipped with twelve estimators: three benchmarks (SAM, CC and ID), three shrinkage estima-
tors (LWF, LWC and LWI), three estimators based on the PCA of the sample covariance or correlation matrix
(PCL, PCP and PCR), and three estimators based on explicit factor models (FEW, FCW and FFF). Note
that since the first factor is usually close to an equally-weighted portfolio of the assets, the FEW estimator is
comparable to a PC estimator with only one factor. The remainder of the article is devoted to the comparison
of these estimators in various empirical settings.

4. Comparison with simulated data (known Σ)

In our first setup, we wish to quantify the estimation risk for each of the ten estimators (the FCW and
FFF estimators cannot be computed in this setting), while assuming that Σ is known. For this purpose, we
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use Monte-Carlo simulations and generate paths for asset returns with a given covariance matrix. This will
enable us to know the true MV weights and the corresponding ex-ante volatility, that is, the lowest possible
volatility which can be attained by a portfolio. A good performance indicator of an estimator is then the
increase between this true minimal volatility and that of the estimated MV portfolio. In this context, one of
the main conveniences of the Monte-Carlo setup is that it allows to control the distribution of returns. We wish
to take advantage of this flexibility to test the impact of distribution tails on our results.

We do not include in this study the estimators FCW and FFF because they rely on the CAPM or Fama-
French model and hence require paths for either the market factor or the three Fama-French factors. Thus, only
the three benchmark estimators (SAM, CC and ID), the three principal component estimators (PCL, PCP and
PCR) and the three shrunk estimators (LWC, LWF and LWI) are considered here. The FEW is also provided
and the single factor in this case is simply an equally-weighted portfolio of all of the assets.

4.1. The Monte-Carlo protocol. We compare the nine estimators on a population of true covariance matri-
ces. In order to generate realistic matrices, we use the Fama-French model. Specifically, we divide the period
from 1957 to 2010 into 527 two-year windows of weekly returns, the starting dates of two consecutive windows
being separated by five weeks. In each window, we consider the N stocks that have stayed within the S&P 500
universe, and we estimate their Fama-French betas by running the following linear regression:

(15) R
(i)
t − R

(f)
t = α(i) +

3∑
k=1

β
(i)
k F

(k)
t + ϵ

(i)
t , i = 1, . . . , N,

where R
(f)
t is the value of the risk-free rate at the beginning of period t. We then construct the true covariance

matrix as:
Σ = β′ΣFβ + Σϵ,

where ΣF is the (3 × 3) sample covariance matrix of the Fama-French factors, β is the (3 × N) matrix of factor
loadings estimated over the two-year window and Σϵ is the (N × N) diagonal matrix containing the variances
of the residuals. We also compute the true expected excess returns as:6

µ(i) = α(i) +
3∑

k=1

β
(i)
k m(i),

where α(i) is the estimate for the intercept in Regression (15) and m(k) is the risk premium associated with the
kth-factor. The risk premia are estimated as the long-term averages of the returns of the Fama-French factors.

Once the covariance matrix and expected returns are computed for the whole S&P 500 universe, we form two
sub-universes, in order to study the effect of universe size on our results and to have a constant size over time
(indeed, the number of constituents of the S&P 500 index slightly varies over time). These two universes consist
respectively of fifty and hundred stocks. The selection of stocks in performed in the following way. For each
window, the stocks are sorted on their true expected return µ(k), and the fifty and hundred stocks are chosen
uniformly according to the distribution of the population’s expected returns (that is, one pick every five or ten
stocks after sorting). Once this selection is completed for a given window i, we compute the true covariance
matrix and the true vector of expected returns, Σi and µi, for the selected subset of stocks (in the sequel, i will
stand as the index of the 527 known covariance matrices). At this stage, we have a population of 527 pairs of
“true” values (Σi,µi).

6In what follows, we refer to expected excess returns simply as expected returns.
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The next step is to generate estimates for Σi. To this end, we assume that the covariance matrix is estimated
as its sample counterpart from a sample of T observations. To study the effect of sample size, we consider
different values of T , namely T = 26, 52, 104 or 208 weeks. For each sample size, we simulate random paths for
asset returns with covariance matrix Σi and vector of expected values µi. The impact of the distribution tails
will be assessed by comparing the results obtained for a multivariate Gaussian distribution with those obtained
for a multivariate Student distribution with three degrees of freedom (this choice is arbitrary but ensures that
the distribution has both heavy tails and finite variance). We underline that in both cases, the distributions
will have common mean µi and covariance matrix Σi.7 Based on each simulated sample j, where j varies
from 1 to 50, we compute the sample covariance matrix Σ̂i,j , as well as the other eight estimators of Σi. The
corresponding MV weights (1) are obtained as:

(16) ŵMV
i,j =

Σ̂−1
i,j 1

1′Σ̂−1
i,j 1

.

To compare the nine estimators, we compute the “Relative Increases in ex-ante Volatility”, defined as:

(17) RIV (wMV
i , ŵMV

i,j ,Σi) =
σ̂MV

i,j − σMV
i

σMV
i

, i = 1, ..., 527, j = 1, ..., 50.

The ex-ante volatilities of the true and estimated MV portfolios are computed as:

σMV
i =

√
(wMV

i )′ΣiwMV
i , σ̂MV

i,j =
√(

ŵMV
i,j

)′
Σi

(
ŵMV

i,j

)
.

The ex-ante volatility of the true MV portfolio is the minimum possible volatility, that would be obtained if
the weights were computed with perfect knowledge of Σi. In practice, of course, the true covariance matrix
is not known and is estimated, so that the estimated MV portfolio has a higher ex-ante volatility, σ̂MV

i,j . The
RIV measures the increase in volatility incurred by the use of the estimator as opposed to the true covariance
matrix.

In general, the portfolio (16) has some negative weights. But short positions are not realistic, because many
funds or investment vehicles have long-only policies and long-short portfolios have in general higher turnover,
and thus higher transaction costs, than long-only versions: long-short MV weights often display instability, and
they require substantial adjustments at rebalancing dates, which can be highly costly. Thus, we also compute
an estimated long-only MV portfolio, by solving the following program:

(18) min
w

w≥0

√
w′Σi,jw.

The corresponding portfolio is denoted as ŵMV −LO
i,j . One drawback of long-only solutions is that they admit no

closed-form expression as functions of the covariance matrix. Thus, they must be numerically computed, which
is time-consuming, especially for the larger universe, that contains hundred assets. An alternative approach to
computing long-only portfolios is the following “rescaling” procedure, that adjusts the unconstrained weights in

7Note that this requires the multiplication of Σi by the scaling factor (ν − 2)/ν in the simulations of the Student distribution to
ensure that returns do have Σi as covariance matrix. The number of degrees of freedom in this case is ν = 3.
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order to obtained nonnegative weights:

(19)


1 - compute the optimal unconstrained weights ŵMV

i,j ;
2 - set the negative weights to zero;
3 - normalize the positive weights so that they sum to one ;
4 - denote the resulting weights as ŵMV −R

i,j .

,

This procedure has the advantage of being computationally simple, in that it requires no numerical optimization.
However, it is not optimal, since it does not in general lead to the same weights as the variance minimization
subject to nonnegativity constraints. In the end, we gather, for each regularization scheme, 527×50=26350
performance measures. We provide their averages in Table 4 (Panel A). Moreover, for a fixed Σi we compute
the standard deviation of the RIV across the fifty noisy estimates, and then average these standard deviations
over all true covariance matrices. These average standard deviations are collected in Panel A of Table 5.

As for long-short portfolios, we compute the relative increases in ex-ante volatilities for the two long-only
portfolios as:

RIV (wMV −LO
i , ŵMV −LO

i,j ,Σi) =

√
(ŵMV −LO

i,j )′Σiŵ
MV −LO
i,j −

√
(wMV −LO

i )′Σiw
MV −LO
i√

(wMV −LO
i )′Σiw

MV −LO
i

,(20)

RIV (wMV −LO
i , ŵMV −R

i,j ,Σi) =

√
(ŵMV −R

i,j )′Σiŵ
MV −R
i,j −

√
(wMV −LO

i )′Σiw
MV −LO
i√

(wMV −LO
i )′Σiw

MV −LO
i

.(21)

Note that in (20), the increase in volatility is only caused by the estimation error, while in (21), the increase in
volatility is also due to the non-optimality of the solution.

4.2. Discussion of the results. Average values and average standard deviations of RIV for the various esti-
mators are shown in Tables 4 and 5.

4.2.1. Impact of universe and sample sizes and distribution tails. We first observe that the (average) RIV is
a decreasing function of the sample size: for a fixed N , the ex-ante volatility decreases as T increases. This
happens because a larger sample allows for a more accurate estimation of the true covariance matrix. The
reduction is particularly strong for long-short MV portfolios constructed from the sample estimator: with small
samples, the sample covariance matrix is not even invertible, so that the corresponding MV portfolio is not
uniquely defined, and no value is reported in the table. The ex-ante volatility of the estimated MV portfolio
is then rapidly decreasing in the sample size. The same qualitative effect is observed for all other estimators
(the CC one, the PC ones, the LW ones and the FEW one), but the magnitude is not as large. For the ID
estimator, of course, the sample size is irrelevant since the sample is actually not used. We also note that the
RIV is increasing in the number of assets: for a given sample size and estimation method, the average RIV is
always larger with hundred than with fifty constituents. In view of these results, it is not surprising that the
RIV is minimal when the ratio N/T is as small as possible. In the table, the minimum ratio corresponds to a
fifty-stock universe with a sample of 208 weeks: it can be checked that for each estimation method and each
distribution of returns, this combination leads to the lowest RIV. But the RIV is not only a function of the
ratio N/T . For instance, in each panel, a comparison between the lines corresponding to N = 50 and T = 104
and those corresponding to N = 100 and T = 208 (e.g., lines 3 and 8 and lines 11 and 16 in Panel A) shows
that for most estimation methods, the RIV is higher if N = 100, although the ratio N/T is unchanged.
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We next look at the impact of tails. The Gaussian distribution has zero kurtosis, while the Student distribu-
tion with three degrees of freedom has an infinite kurtosis. It turns out that for given universe size, sample size
and estimation method, the RIV is much larger when the distribution has fat tails than when it is Gaussian:
the ratio of the value achieved with the Student distribution to the value achieved with Gaussian returns is in
general comprised between two and three. Hence, estimation errors are magnified if asset returns have fat tails.
This is an important property because the historical distribution is known to exhibit fat tails (we compare the
estimators on historical data in Section 5). Thus, the volatility of the estimated MV portfolio tends to be larger
if the universe is large, the sample is small and the underlying return distribution has non-zero kurtosis.

4.2.2. Best and worst estimators for given universe and sample sizes and given distribution of returns. The
next natural question is which estimators perform best or worse when these three dimensions have been fixed.
A first observation is that the SAM estimator (i.e., the sample covariance matrix) leads to the highest RIV for
almost every combination of the three criteria. There are however six exceptions, on lines 28, 31, 32, 43, 44
and 48, where this estimator dominates the CC and the LWC ones. These exceptions correspond to the largest
sample sizes (104 or 208 weeks) and to long-only portfolios (computed either in an optimal way, as in Panel B,
or in a heuristic way, as in Panel C). This is in line with the findings of Jagannathan and Ma (2003), who show
that increasing the number of observations or imposing weight constraints reduces the out-of-sample variance
of a MV portfolio based on the SAM estimator. More generally, the difference between the SAM estimator and
the others is extremely large when short positions are allowed and the sample is small (line 2), but reduces if
one goes for a larger sample or if one imposes nonnegativity constraints, even in a non-optimal way (lines 12,
20, 36 for instance). The CC estimator does not systematically dominate the SAM one (lines 31 and 43 for
instance). This is not surprising for large samples, because the assumption of a uniform correlation structure
is less realistic with hundred than with fifty constituents, but the CC estimator can be worse even in small
samples (line 28).

Turning to factor-based and shrunk estimators (i.e., the PC, LW and FEW ones), we observe that in all
cases, at least one of them outperforms the three benchmark estimators. In other words, the estimator that
yields the lowest volatility is always to be searched for among those that rely on a factor model or on statistical
shrinkage, which confirms the interest of these regularization methods. That is not to say, however, that a given
structured estimator always outperforms the benchmarks. In details, we see that the PC estimators outperform
the benchmark ones more often than the LW ones do. Indeed, there are only nine lines where at least one PC
estimator underperforms one of the benchmark ones,8 while there are thirty-four lines in which at least one
LW estimator is dominated by a benchmark estimator are in much larger number.9 The two LW estimators
that most often underperform a benchmark estimator are LWC and LWI. The FFF estimator (i.e., the one that
relies on the Fama-French model) outperforms the three benchmarks in the majority of cases, but it does it less
often than the PC estimators. Another observation is that the choice of the shrinkage target has more impact
on the RIV of the LW estimators than the factor selection criterion used in the PC estimators. This can be
seen with the spread between the highest and the lowest RIV within a class of estimators: it is only 2.3% for
PC estimators (line 25), and it reaches 24% for the LW ones (line 13).

8These lines are 1, 2 (PCL is dominated by CC), 9, 19, 11 (PCL, PCP and PCR are dominated by ID), 17 (PCL is dominated by
CC), 18 (PCL, PCP and PCR are dominated by CC), 25 (PCL is dominated by ID) and 26 (PCP and PCR are dominated by ID)
9The complete list is 1, 2, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43,
44, 45 and 48, which represents 34 lines out of 48.
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Looking at the minimum RIV in each row, we see that the lowest RIV is attained with the PCP, the LWC
or the LWF estimator if the underlying distribution is Gaussian and portfolios are computed by numerical
optimization, either without or with short-sales constraints. If weights are rescaled, the minimum can be
achieved by the FEW estimator, but the lowest RIV achieved with the PCP, LWC and LWF estimators exceeds
this minimum by no more than 30 basis points (lines 37, 38 and 39). But for practical applications, the results
obtained with the Student distribution may be more relevant, given the presence of fat tails in historical return
distribution. In these cases, the minimum is almost always attained by the LWI estimator, except in lines 16,
32, 47 and 48, where it is the PCR estimator that dominates the others. When the minimum is achieved by
the LWI estimator, the RIV of the PCR estimator exceeds this minimum by no more than 650 basis points.
This number may seem huge, but it should be noted that by definition of the RIV (see (17), (20) and (21)), an
increase of 650 basis points in the RIV corresponds to an increase in the volatility of the estimated MV portfolio
which is equal to 0.0650 times the volatility of the true MV portfolio. Assuming that the latter volatility is
between 15% and 20%, this increase in RIV means an increase in volatility comprised between 0.98% and 1.30%,
which is reasonable.

Looking at the average standard deviations of Table 5, we see that in the presence of heavy tails and when
the universe is larger than the available sample, the LWC, LWF and CC may produce outliers, that is, weighting
schemes for which the ex-ante volatility is substantially (often more than 40%) larger than that of the true MV
portfolio.10

4.2.3. Impact of rescaling. As a last comment on Table 4, we observe that for fixed universe and sample sizes,
estimation method and return distribution, the average RIV in Panel C can be lower than that in Panel B. This
result is perhaps surprising, given that the rescaling is a non-optimal way of computing long-only MV weights.
But because ex-ante volatilities are computed using the true covariance matrix, not the estimated one, there
is no mathematical reason for the portfolio with rescaled weights to have a larger variance. The fact that this
portfolio has sometimes a lower variance means that the estimation errors compensate the loss of optimality
which arises from the use of a heuristic rule.

5. Comparison with real financial data (unknown Σ)

5.1. The empirical protocol. We now wish to assess the quality of the twelve estimators on live financial
data. In this case, the true covariance matrices are unknown and it is impossible to compute the RIV as in the
previous setting. A standard empirical procedure is to estimate MV portfolios and measure their out-of-sample
volatility.

In details, we consider the seven investment universes presented in Table 3. Repeating the analysis on
several datasets, as in DeMiguel et al. (2009), ensures that results are not driven by the specific data pattern
encountered in a universe. We also test different sample sizes: the covariance matrix is estimated using T weekly
returns, with T being equal to 52, 104 or 208 weeks. Then, for each estimator, we compute three estimated MV
portfolios, as in the previous section: unconstrained (long-short), optimal long-only, and long-only with rescaled
weights. The portfolios are rebalanced every thirteen weeks, that is, four times a year. Our primary focus is set
on the out-of-sample volatility, that is, the standard deviation of the returns over the whole period.11 We have

10Lines 9, 13, 25 and 29 show that the average standard deviation in RIV of LWC, LWF or CC estimators can be twice as large
as those of LWI or PCR estimators.
11The first T weeks in the dataset are not used in the backtest because they are needed for the estimation of the first covariance
matrix.
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also computed the turnover of each of the four strategies, as it is a practical indicator which gives a sense of
the magnitude of transaction costs. For both indicators, we use the same definitions as DeMiguel et al. (2009)
(Equations (11) and (13) in their paper). In particular, the turnover on rebalancing date t is computed as:

Turnovert =
N∑

i=1
|wit − wit−|,

where wit is the imposed weight of constituent i on date t and wit− is the effective weight just before date t.
The turnovers that we report in the tables below are thus quarterly.

5.2. Discussion of the results. The volatilities and the one-way turnovers of long-short portfolios are in
Tables 6 and 7. Those for the MV portfolio subject to long-only constraints (solutions to (18)) are in Tables 8
and 9. Finally, Tables 10 and 11 display the statistics for the MV portfolios with rescaled weights.

5.2.1. Comparison with the literature. A first remark is that our results are consistent with those of Ledoit and
Wolf (2003), in spite of several differences between their protocol and ours: their study is carried on a very large
investment universe (more than nine hundred stocks), while our largest universe (the S&P 500 universe) has five
hundred stocks, they estimate the covariance matrix from monthly returns while we use weekly observations, and
they rebalance portfolios every year as opposed to every quarter. Besides, their principal component estimator
retains five factors from the decomposition of the covariance matrix, while we diagonalize the correlation matrix
and test different criteria for factor selection (see Section 3.2). The number of of five factors is close to the
number of six which is given by the Logarithmic criterion for the S&P 500 universe (log(500) = 6.21...). Finally,
Ledoit and Wolf (2003) do not impose short-sales constraints. Thus, the results that they report in their Tables
1 and 2 can be compared with those that we obtain in our Table 6 for the S&P 500 universe, and in particular,
their principal component estimator is roughly the same as our PCL estimator. Ledoit and Wolf (2003) show
that the LWF estimator leads to the lowest volatility, which is also the case for all sample sizes in Table 6. They
also find that the LWI estimator is the second best in terms of out-of-sample volatility. In the column SPX of
Table 6, we actually find that the second best estimator is PCL or PCR (the LWI estimator turns out to be
the second best when we average volatilities across datasets). We also confirm that the PCL estimator yields
slightly higher volatilities than the LWF one, but the increase with respect to LWF is not huge (the largest
spread is 60 basis points, with T = 208 weeks). When it comes to turnover, Ledoit and Wolf (2003) report
that the principal component estimator (our PCL estimator) involves less rebalancing than the LWI and LWF
estimators. This is the case in our experiments too (see the column SPX of Table 7). Hence, notwithstanding
the differences between the frameworks (different universe, sampling frequency for returns, number of factors,
rebalancing period), our results are consistent with theirs.

Another result from the literature which is confirmed by our results is that weight constraints do not system-
atically reduce volatility, for any estimator and any sample size. Let us consider for example the SAM estimator
and the smallest sample (fifty-two weekly returns). The long-only MV portfolio in universes Ind10, Ind17 and
Ind48 (see Table 8) has lower volatility than its long-short counterpart (see Table 6). This is especially true
in the universe Ind48, where the long-short portfolio has a very high volatility (37.3%, versus 12.3% for the
long-only version). However, in the datasets FF6 and FF25, the opposite effect is observed: the long-only
portfolios are more volatile. For other estimators, the impact of short-sales constraints is even less clear: it can
be negligible (e.g., PCR estimator with Ind48 and T = 104), reduce the volatility (e.g., FCW estimator with
FF6 and T = 104) or increase it (e.g., SAM estimator with FF6 and T = 104). Jagannathan and Ma (2003)
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report similar effects: imposing short-sales constraints can reduce the out-of-sample volatility of estimated MV
portfolios based on the sample estimator in large datasets, bringing it below that of the naively diversified
equally-weighted portfolio, but if a factor-based or shrunk estimator is used, the constraints lead instead to a
higher volatility.

A third result already present in the literature is that optimal long-only portfolios are less sensitive than
long-short ones to the choice of a regularization method. This is apparent from the results of Jagannathan and
Ma (2003), and was also shown theoretically by Fan et al. (2012) and empirically by Pantaleo et al. (2011). As
a matter of fact, volatilities across estimation methods for given sample size and dataset are closer to each other
in Table 8 (long-only portfolios) than in Table 6. Moreover, volatilities in Table 8 display less sensitivity to the
sample size than those in Table 6, as can be seen by comparing the various panels for a given dataset and a given
estimation method. For the smallest datasets (i.e., those with less than 96 assets), volatility differences across
estimators other than the sample one are hardly noticeable. A possible explanation is that the computation of
optimal long-only weights does not require the inversion of covariance matrix estimator. The inversion process
is known to be an error propagator (see for instance the bounds in Fan et al. (2008) for the sample covariance
matrix) and therefore bypassing it can reduce estimation errors.

5.2.2. Best and worst estimators for a given dataset and a given sample size. Beside these already known results,
Tables 6, 8 and 10 contain new information on the ability of various estimators to reduce the out-of-sample
volatility of estimated MV portfolios. When short positions are allowed (Table 6), the LW estimators perform
well: for each sample size and each dataset but FF96, the minimum volatility is achieved by one of these. It
is only in the FF96 dataset that the minimum volatility is attained by a PC estimator, but in that case, the
distance of the best LW estimator to the minimum does not exceed 40 basis points. The performances of PC
and LW estimators, which are good, contrast with those of the benchmark estimators: for each sample size and
each dataset, the highest volatility corresponds to either the SAM, CC or ID estimator, and most of the time to
the ID one. This result is encouraging, because it shows that it is easy to improve the volatility of the naively
diversified equally-weighted portfolio through scientific diversification.

For optimal long-only portfolios (Table 8), the LW estimators again show up among the best performers. As
noted previously, their dominance is not very significant in the smallest datasets (that is, all datasets except
FF96 and SPX), and in these universes, the PC estimators and the FEW, FCW and FFF ones give very close
results. In the FF96 and SPX universes, the minimum is always achieved by a LW estimator, except with the
FF96 dataset and T = 208: with this combination, the PCR estimator yields the lowest volatility (13.9%),
which is only slightly below that obtained with the LWI estimator (14.0%). But the PC estimators do not lead
to substantially different volatilities: for each sample size, the worst PC estimator gives a volatility that does
not exceed the minimum by more than 40 basis points. For portfolios computed by rescaling, an unexpected
result occurs: the minimum volatility for given dataset and sample size is often attained by the CC estimator.
Even when this is not the case, as in the panel corresponding to T = 208 for the datasets Ind48, FF6, FF25
and FF96, the volatility of the MV portfolio based on the CC estimator is not larger than the minimum by
more than 20 basis points. Thus, this estimator shows surprisingly good results when it is combined with
the rescaling procedure. The PC estimators, however, are not much worse: for instance, the volatility of the
portfolio constructed with the PCR estimator is always greater than or equal to the minimum, but the distance
to the minimum does not exceed 50 basis points. The good performance of the CC estimator in this table
contrasts with its poor results in the Monte-Carlo study (see Section 4).
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It is also interesting to compare the various factor selection criteria, which correspond respectively to the
PCL, PCP and PCR estimators. When short positions are allowed (Table 6), the PC estimator that yields the
lowest volatility is in general the PCL or the PCP one, except for a few combinations of dataset and sample
size. When short positions are ruled out in an optimal way (Table 8) and the sample counts 52 or 104 weeks,
the PCL and PCP estimators also dominate the PCR one in most datasets. Moving to a large sample with
208 observations, we observe that the PCR estimator is the best among PC estimators for almost all datasets.
Finally, when weights are obtained through rescaling (Table 10), it is the PCR estimator that dominates the
PCL and PCP ones for the vast majority of datasets and sample sizes.

5.2.3. Turnovers. Turnovers are reported in Tables 7, 9 and 11. As expected, they are huge for long-short
portfolios, in Table 7, and the numbers look all the more impressive if one recalls that these are quarterly
turnovers. The SAM estimator, in particular, gives completely unreasonable turnovers, that often exceed 100%.
It is clearly the ID estimator that implies the most acceptable levels, because the MV portfolio associated
with this estimator is in fact the equally-weighted portfolio. The PC, LW, FEW, FCW and FFF estimators
have comparable turnovers, which in most cases are lower than that of the MV portfolio based on the SAM
estimator, but the levels are still very high. More reasonable figures, most of which are below 100%, are obtained
for optimal long-only portfolios (Table 9) and for long-only portfolios with rescaled weights (Table 11). Again,
the highest values correspond to the SAM estimator for most combinations of dataset and sample size.

The ID estimator set apart, if the weights are unconstrained, then the CC estimator ranks first in most cases
and has the overall smallest turnover on average, closely followed by the FCW and FEW estimators, which
is in line with the results of Ledoit and Wolf (2003). In contrast, the PCP, LWF, LWI and sample estimator
often perform poorly. The shrinkage and sample estimators display particularly disappointing results in large
datasets (Ind48, FF96 and SPX), while the last and second-to-last estimators in small datasets (FF6, Ind10
and Ind17) are the PCP and the sample estimators. In the case of long-only portfolios, whether computed in
an optimal way or through rescaling (see Tables 9 and 11), the two structured estimators (CC and FEW) still
display low turnovers. The PCR estimator implies reasonable levels of turnover for all datasets and all sample
sizes, and for all datasets but the FF6 universe, the associated turnovers are lower than those of the shrunk
estimators.

5.2.4. Impact of rescaling. One may also compare the volatilities of portfolios obtained by constraining weights
to be nonnegative (Table 8) to those of portfolios with rescaled weights (Table 10). Unlike in the Monte-Carlo
study, where it does not always lead to higher volatility than the optimization under nonnegativity constraints,
the rescaling procedure here increases the volatility. This comes as no surprise given that the corresponding
portfolios do not ex-ante minimize volatility. As far as turnover is concerned, Table 11 shows that for each
dataset and sample size, the spread between the maximum and the minimum turnovers tends to be higher for
rescaled weights than for long-only optimal weights, as was the case for volatilities.

6. Conclusion

6.1. Summary of results. The conclusions of the Monte-Carlo and empirical studies do not designate an
estimator that would dominate the others consistently across all universes and all sample sizes. In order to have
a synthetic view of the results, we score estimators after the figures reported in Tables 4, 6, 10, 7 and 11 (Table
5 is not used here because it serves only for outlier detection, and Tables 8 and 9 are not taken into account
because they do not show enough significant differences between estimators). For each table, we group cells
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into categories: Gaussian versus Student returns for the simulated data, unconstrained versus rescaled weights
for real data, and “low” or “high” ratio N/T for both. The performance indicator of each estimator is then
averaged across all the cells that belong to a category. This indicator is the relative increase in volatility (RIV)
for simulated data, and the out-of-sample volatility and the turnover for real data. We thus obtain a total of
ten average criteria for the Monte-Carlo study, and twelve for the study on real data. An estimator is assigned
a “+” in Table 12 if it ranks among those that lead to the lowest four volatilities or turnovers, and a “−” if
it belongs to those that imply the highest four volatilities or turnovers. This ranking of estimators shows that
the LWI estimator generates low out-of-sample volatilities when weights are unconstrained, but does it at the
expense of a high turnover. It performs less well in terms of volatility when weights are rescaled. The LWF
estimator displays a similar behavior: it demonstrates good ability to reduce the volatility in the real dataset
when weights are unconstrained, but not when they are rescaled. Moreover, the MV portfolio built from this
estimator is one of those with the highest turnovers.

The opposite occurs for the CC and FEW estimators: in the real dataset, they are better ranked in terms
of volatility when short sales are allowed for than when weights are rescaled. The corresponding MV portfolios
also rank among those that have the lowest turnovers. However, they do not have convincing performances in
the Monte-Carlo study: the CC estimator is even one of those that yield the highest four RIVs.

The PC estimators tend to be good in terms of volatility reduction, both in the Monte-Carlo and in the
empirical study. As the LW estimators, they are not well ranked in terms of turnover, but the LWF and LWI
estimators have even worse rankings, as indicated by the many “−” grades that they obtain. Finally, only the
PCL and the PCR estimators do not record any − sign, which shows that they are never among the “worst”
estimators according to the criteria retained in this table.

6.2. Concluding remarks. In this paper, we conduct an extensive comparison of twelve estimators of the
covariance matrix, which can be categorized into three benchmark estimators (the sample estimator, the naive
estimator equal to the identity matrix and the constant-correlation estimator), and a set of “regularized”
estimators that encompasses a family of estimators based on an implicit factor model, a family of shrunk
estimators and a family of estimators based on an explicit factor model. We run a Monte-Carlo study in
order to compare the estimators across many paths for asset returns, and we consider two distributions for
returns, with thin or fat tails. We next do an out-of-sample study on real data, thereby following the usual
protocol in the empirical literature. In each of these parts, we consider different universes and different sample
sizes, because these are two important drivers of estimation risk. We also repeat the analysis for long-short
minimum variance portfolios, and for long-only portfolios with optimal weights or with weights obtained through
a heuristic rescaling rule. Estimators are compared on the grounds of the volatility of the estimated minimum
variance portfolio, which is the natural and standard criterion, but we also compute the turnovers, which are
important for practitioners.

The results that we obtain do not demonstrate an unambiguous superiority of one regularized estimator of the
covariance matrix over another one. They do confirm that the sample estimator and the identity matrix (which
leads to proxying the minimum variance portfolio as the equally-weighted portfolio) are in general dominated
in terms of volatility by at least one regularized estimator. But that is not to say that regularized estimators
always perform well: a minimum variance portfolio constructed with one of them can have higher volatility
than a similar portfolio using a benchmark estimator. The benchmark estimator that proves to be the most
serious competitor for regularized estimators is the constant-correlation one. But it has very disappointing
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performance in the Monte-Carlo study when returns follow a Student distribution, which does not lead to
consider it a valuable choice.

In order to choose an estimator, one may look at averages of minimum variance portfolio volatilities and
turnovers across the various combinations of datasets, sample sizes and weight constraints that we have consid-
ered. According to this procedure, the PCL (Principal Component selection with Logarithmic criterion) and the
PCR estimators (Principal Component selection with Random Matrix Theory) appear as good choices, because
they perform well in terms of volatility reduction without implying too large levels of turnover.
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Appendix A. Formulas for the shrinkage intensities

We denote R
(k)
t the return of asset k at time t for t = 1, . . . , T and R̄(k) = T −1∑T

t=1 R
(k)
t the average return

over the estimation window. The bold notation Rt will stand for the vector of all asset returns at time t and
R̄ = T −1∑T

t=1 Rt for the vector of the averages of the assets’ returns. The sample covariance matrix is then
equal to Σ̂ = (T − 1)−1∑T

t=1(Rt − R̄)(Rt − R̄)′; its elements will be denoted σ̂k,l. The following constant will
be used in two estimators of α̂∗:

π̂ =
N∑

k=1

N∑
l=1

π̂k,l,

where

π̂k,l = 1
T

T∑
t=1

((R(k)
t − R̄k)(R(l)

t − R̄j) − σ̂k,l)2.

A.1. Shrinkage towards the single-factor covariance matrix. In this case, the shrinkage target is Σ̂F

(defined in (9)) and we write σ̂F
k,l for its elements. The returns of the market factor are denoted R

(0)
t and their

mean R(0). We write σ̂k,0 for the sample covariance between the returns of asset k and those of the market
factor. In addition to π̂, we require two other constants:

γ̂ =
N∑

k=1

N∑
l=1

(σ̂k,l − σ̂F
k,l)2

and

ρ̂ =
N∑

k=1

πk,k +
N∑

k=1

∑
1≤l≤N

l ̸=k

T∑
t=1

qk,l,t

T

where

qk,l,t = σ̂l,0σ̂0,0(R(k)
t − R̄(k) + σ̂k,0σ̂0,0(R(l)

t − R̄(l)) − σ̂k,0σ̂l,0(R(0)
t − R̄(0))

σ̂2
0,0

(R(0)
t − R̄(0))(R(k)

t − R̄(k))(R(l)
t − R̄(l))

− σ̂F
k,lσ̂

S
k,l,

Ledoit and Wolf (2003) show that an estimator for the optimal shrinkage intensity is given by

(22) α̂∗ = max
(

0, min
(

1,
π̂ − ρ̂

γ̂T

))
.

A.2. Shrinkage towards the constant-correlation covariance matrix. Ledoit and Wolf (2004a) provide
the following estimator for the optimal shrinkage intensity when the shrinkage target is Σ̂CC given in (6). We
denote the element of this matrix σ̂CC

k,l . We start by introducing some intermediate constants. Given

θ̂kk,kl = 1
T

T∑
t=1

((R(k)
t − R̄(k))2 − σ̂k,k)((R(k)

t − R̄(k))(R(l)
t − R̄(l)) − σ̂k,l),

θ̂ll,kl = 1
T

T∑
t=1

((R(l)
t − R̄(l))2 − σ̂l,l)((R(k)

t − R̄(k))(R(l)
t − R̄(l)) − σ̂k,l),



24 GUILLAUME COQUERET AND VINCENT MILHAU

we compute

ρ̂ =
N∑

k=1

πk,k +
N∑

k=1

∑
1≤l≤N

l ̸=k

r̄

2
,

(√
σ̂ll

σ̂k,k
θ̂kk,kl +

√
σ̂k,k

σ̂l,l
θ̂ll,kl

)
,

γ̂ =
N∑

k=1

N∑
l=1

(σ̂k,l − σ̂CC
k,l )2,

where r̂ is given in Equation (5). Ledoit and Wolf (2004a) show that an estimator for α̂∗ is again given by (22).

A.3. Shrinkage towards the scaled identity matrix. Ledoit and Wolf (2004b) provide the following esti-
mator for the optimal shrinkage intensity when the shrinkage target is σ̄2IN where σ̄2 = tr(Σ̂)/N . Given

d = tr((Σ̂ − σ̄2IN )2)/N

and

b = min

(
d,

1
NT 2

T∑
k=1

tr((Rt − R̄)(Rt − R̄)′ − Σ̂)

)
,

the estimator of the optimal intensity is
α̂∗ = b/d.
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Appendix B. Tables

Table 2. List of estimators considered in this paper.

Name Abbrev. Reference Definition
Principal component Logarithm PCL - 3.9
Principal component Penalized PCP Bai and Ng (2002) 3.7

Principal component RMT PCR Laloux et al. (2000) 3.8
Ledoit & Wolf constant correlation LWC Ledoit and Wolf (2004a) 3.11

Ledoit & Wolf single factor LWF Ledoit and Wolf (2003) 3.10
Ledoit & Wolf identity LWI Ledoit and Wolf (2004b) 3.12

Sample SAM - 3.1
Constant correlation CC Elton and Gruber (1973) 3.2

Identity ID - 3.3
Single factor equal weighted FEW - 3.4
Single factor cap weighted FCW - 3.5
Three factors Fama-French FFF - 3.6

This table contains the list of all covariance matrix estimators considered in this paper, with their abbreviated names. When
available, a reference paper is cited. The last column refers to the formal definition of each estimator in the text.
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Table 3. List of datasets considered in the section on real data.

Dataset Abbreviation Number of assets Time period Source
Ten industry portfolios representing

the U.S. stock market Ind10 10 01/1959-12/2012 KF

Seventeen industry portfolios representing
the U.S. stock market Ind17 17 01/1959-12/2012 KF

Forty-eight industry portfolios representing
the U.S. stock market Ind48 48 07/1969-12/2012 KF

Six Fama and French (1992) portfolios
of firms sorted by size and book-to-market FF6 6 01/1959-12/2012 KF

Twenty-five Fama and French (1992) portfolios
of firms sorted by size and book-to-market FF25 25 01/1959-12/2012 KF

Ninety-six Fama and French (1992) portfolios
of firms sorted by size and book-to-market FF96 96 07/1969-12/2012 KF

An adjusted (*) subset of the S&P 500 universe SPX ∈(450,500) 04/1957-12/2010 CRSP
This table contains the list of the datasets on which the various estimators of the covariance matrix are compared, together with
their abbreviation, their period of availability and the source of the data. “KF” means Kenneth French’s website. The last dataset
is a subset of the S&P 500 universe defined as follows: at each rebalancing date, we check if a stock belongs to the index. If it
does, we check that past and future values are coherent for estimation and holding period purposes. If some data is missing or
corrupt, then the asset is subtracted from the set. For our dataset and T = 104, this procedure gives 492 assets on average, with
a minimum of 471 and a maximum of 500. Likewise, the FF96 was extracted from the FF100 returns downloaded from Kenneth
French’s website.
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Table 4. Comparison of estimators on simulated data – Average of relative increase in volatility
across estimators and true covariance matrices.

Case Dist. N T PCL PCP PCR LWC LWF LWI SAM CC ID FEW
1 N 50 26 0.177 0.158 0.164 0.170 0.183 0.184 - 0.175

0.256

0.177
PANEL A: 2 N 50 52 0.137 0.122 0.129 0.119 0.136 0.149 4.661 0.130 0.134

LONG-SHORT 3 N 50 104 0.101 0.090 0.095 0.090 0.094 0.112 0.384 0.108 0.095
4 N 50 208 0.071 0.065 0.064 0.067 0.061 0.075 0.145 0.098 0.063
5 N 100 26 0.263 0.252 0.256 0.287 0.258 0.307 - 0.299

0.446

0.251
6 N 100 52 0.193 0.187 0.189 0.216 0.188 0.250 - 0.239 0.186
7 N 100 104 0.134 0.131 0.130 0.168 0.129 0.192 4.393 0.208 0.131
8 N 100 208 0.090 0.088 0.085 0.126 0.084 0.136 0.387 0.192 0.090
9 S 50 26 0.301 0.319 0.299 0.404 0.325 0.236 - 0.415

0.256

0.328
10 S 50 52 0.284 0.288 0.286 0.349 0.295 0.227 5.466 0.363 0.306
11 S 50 104 0.268 0.267 0.272 0.315 0.273 0.219 0.670 0.329 0.284
12 S 50 208 0.248 0.247 0.251 0.288 0.248 0.207 0.372 0.306 0.259
13 S 100 26 0.431 0.432 0.436 0.624 0.436 0.384 - 0.650

0.446

0.447
14 S 100 52 0.397 0.396 0.397 0.564 0.388 0.369 - 0.593 0.413
15 S 100 104 0.359 0.358 0.351 0.519 0.353 0.350 5.312 0.550 0.376
16 S 100 208 0.318 0.318 0.304 0.479 0.319 0.324 0.710 0.521 0.339

PANEL A Average 0.236 0.232 0.232 0.299 0.236 0.233 21.739 0.324 0.351 0.242
17 N 50 26 0.168 0.147 0.152 0.147 0.170 0.163 - 0.152

0.256

0.166
PANEL B: 18 N 50 52 0.126 0.112 0.120 0.102 0.123 0.129 0.226 0.111 0.122

LONG ONLY 19 N 50 104 0.086 0.078 0.086 0.076 0.082 0.094 0.148 0.091 0.081
20 N 50 208 0.054 0.051 0.055 0.056 0.051 0.062 0.081 0.082 0.051
21 N 100 26 0.222 0.205 0.210 0.221 0.216 0.243 0.488 0.231

0.446

0.210
22 N 100 52 0.167 0.156 0.160 0.162 0.161 0.195 0.355 0.177 0.159
23 N 100 104 0.115 0.108 0.111 0.124 0.109 0.143 0.213 0.151 0.109
24 N 100 208 0.072 0.069 0.071 0.092 0.068 0.094 0.120 0.138 0.069
25 S 50 26 0.274 0.294 0.271 0.357 0.291 0.211 0.511 0.372

0.256

0.297
26 S 50 52 0.255 0.259 0.258 0.311 0.265 0.202 0.386 0.322 0.274
27 S 50 104 0.237 0.237 0.242 0.280 0.242 0.194 0.295 0.293 0.250
28 S 50 208 0.218 0.217 0.220 0.257 0.219 0.183 0.231 0.273 0.225
29 S 100 26 0.347 0.350 0.351 0.491 0.346 0.301 0.570 0.516

0.446

0.359
30 S 100 52 0.319 0.320 0.320 0.440 0.313 0.288 0.471 0.434 0.331
31 S 100 104 0.290 0.290 0.288 0.406 0.287 0.274 0.359 0.431 0.301
32 S 100 208 0.257 0.257 0.251 0.374 0.259 0.254 0.279 0.408 0.271

PANEL B Average 0.200 0.197 0.198 0.244 0.200 0.189 0.322 0.261 0.351 0.205
33 N 50 26 0.145 0.132 0.136 0.142 0.144 0.163 - 0.147

0.256

0.140
PANEL C: 34 N 50 52 0.107 0.098 0.103 0.102 0.103 0.133 0.352 0.109 0.101

RESCALED 35 N 50 104 0.074 0.069 0.073 0.077 0.070 0.100 0.160 0.091 0.069
36 N 50 208 0.049 0.046 0.047 0.058 0.045 0.068 0.086 0.082 0.045
37 N 100 26 0.208 0.198 0.200 0.210 0.200 0.249 - 0.218

0.446

0.195
38 N 100 52 0.158 0.151 0.152 0.163 0.150 0.208 - 0.175 0.147
39 N 100 104 0.114 0.109 0.108 0.132 0.106 0.164 0.386 0.154 0.105
40 N 100 208 0.080 0.076 0.074 0.105 0.072 0.122 0.171 0.142 0.072
41 S 50 26 0.257 0.258 0.260 0.343 0.270 0.210 - 0.354

0.256

0.279
42 S 50 52 0.238 0.236 0.240 0.304 0.245 0.202 0.425 0.315 0.256
43 S 50 104 0.220 0.218 0.220 0.276 0.225 0.194 0.275 0.288 0.233
44 S 50 208 0.200 0.201 0.196 0.254 0.204 0.184 0.215 0.271 0.211
45 S 100 26 0.339 0.337 0.345 0.456 0.337 0.302 - 0.477

0.446

0.353
46 S 100 52 0.311 0.310 0.312 0.422 0.305 0.290 - 0.442 0.324
47 S 100 104 0.283 0.281 0.274 0.396 0.279 0.277 0.461 0.420 0.300
48 S 100 208 0.249 0.250 0.234 0.371 0.252 0.257 0.290 0.402 0.266

PANEL C Average 0.190 0.186 0.186 0.238 0.188 0.195 - 0.255 0.351 0.194
Gaussian Dist. Average 0.130 0.121 0.124 0.134 0.125 0.156 6.157 0.154 0.351 0.124
Student Dist. Average 0.288 0.289 0.287 0.387 0.291 0.256 8.791 0.406 0.351 0.303
Average for N/T < 0.5 0.161 0.158 0.158 0.202 0.159 0.160 0.279 0.229 0.319 0.165
Average for N/T > 1.5 0.260 0.256 0.256 0.323 0.260 0.253 - 0.337 0.383 0.265

Overall Average 0.209 0.205 0.205 0.260 0.208 0.206 - 0.280 0.351 0.214
For each estimation method, each universe size, each sample size (expressed in weeks) and each distribution of returns (normal
or Student), we compute three estimated MV portfolios: a long-short one (Panel A), a long-only optimal one (Panel B), and a
long-only one in which negative weights have been eliminated by a heuristic adjustment to the long-short portfolio (Panel C). The
table shows the average relative increases in volatility (RIV) with respect to the MV portfolios that would use the true covariance
matrix. The RIV for a given true matrix and a given estimator are defined in (17) for Panel A, in (20) for Panel B and in (21) for
Panel C. Averages are then taken across 50 estimators and 527 true covariance matrices. The estimators are defined in Table 2.
Missing figures for the SAM estimator arise when N > T and the sample covariance matrix is not invertible.
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Table 5. Comparison of estimators on simulated data – Average (across true covariance ma-
trices) of standard deviations (across estimators) of relative increases in volatility.

Case Dist. N T PCL PCP PCR LWC LWF LWI SAM CC ID FEW
1 N 50 26 0.043 0.036 0.039 0.040 0.043 0.031 - 0.040

0

0.042
PANEL A: 2 N 50 52 0.032 0.028 0.031 0.022 0.030 0.027 3.517 0.022 0.030

LONG-SHORT 3 N 50 104 0.023 0.021 0.021 0.016 0.019 0.021 0.093 0.015 0.020
4 N 50 208 0.016 0.014 0.013 0.012 0.012 0.015 0.031 0.010 0.012
5 N 100 26 0.044 0.042 0.044 0.046 0.044 0.043 - 0.046

0

0.043
6 N 100 52 0.035 0.034 0.034 0.028 0.033 0.037 - 0.028 0.033
7 N 100 104 0.024 0.024 0.023 0.021 0.022 0.028 2.158 0.019 0.023
8 N 100 208 0.015 0.017 0.014 0.017 0.014 0.020 0.065 0.014 0.015
9 S 50 26 0.062 0.078 0.061 0.120 0.093 0.029 - 0.119

0

0.069
10 S 50 52 0.059 0.063 0.061 0.087 0.063 0.025 4.331 0.089 0.064
11 S 50 104 0.058 0.059 0.061 0.071 0.058 0.026 0.153 0.068 0.062
12 S 50 208 0.056 0.055 0.058 0.061 0.056 0.028 0.080 0.055 0.061
13 S 100 26 0.056 0.058 0.054 0.127 0.120 0.038 - 0.125

0

0.061
14 S 100 52 0.058 0.057 0.058 0.101 0.076 0.038 - 0.097 0.063
15 S 100 104 0.058 0.056 0.059 0.087 0.061 0.044 2.515 0.080 0.066
16 S 100 208 0.058 0.055 0.053 0.081 0.060 0.052 0.113 0.067 0.069
17 N 50 26 0.044 0.037 0.039 0.038 0.043 0.030 0.093 0.036

0

0.042
PANEL B: 18 N 50 52 0.032 0.028 0.031 0.021 0.029 0.025 0.058 0.020 0.029

LONG ONLY 19 N 50 104 0.021 0.019 0.021 0.015 0.019 0.020 0.033 0.013 0.019
20 N 50 208 0.013 0.012 0.012 0.011 0.011 0.013 0.018 0.009 0.011
21 N 100 26 0.041 0.037 0.039 0.041 0.041 0.035 0.121 0.040

0

0.040
22 N 100 52 0.033 0.030 0.032 0.025 0.031 0.031 0.065 0.024 0.031
23 N 100 104 0.023 0.021 0.022 0.018 0.021 0.025 0.039 0.017 0.021
24 N 100 208 0.014 0.014 0.014 0.014 0.013 0.017 0.022 0.012 0.013
25 S 50 26 0.063 0.082 0.061 0.108 0.069 0.028 0.122 0.109

0

0.069
26 S 50 52 0.058 0.064 0.061 0.079 0.061 0.024 0.092 0.076 0.063
27 S 50 104 0.055 0.056 0.059 0.062 0.056 0.024 0.069 0.059 0.059
28 S 50 208 0.054 0.053 0.055 0.054 0.054 0.027 0.055 0.047 0.057
29 S 100 26 0.054 0.057 0.052 0.111 0.058 0.033 0.140 0.109

0

0.057
30 S 100 52 0.053 0.054 0.055 0.081 0.054 0.033 0.091 0.078 0.057
31 S 100 104 0.053 0.053 0.054 0.069 0.052 0.037 0.068 0.062 0.057
32 S 100 208 0.052 0.050 0.050 0.061 0.052 0.042 0.052 0.051 0.059
33 N 50 26 0.034 0.030 0.032 0.034 0.034 0.028 - 0.033

0

0.034
PANEL C: 34 N 50 52 0.026 0.023 0.026 0.020 0.025 0.024 0.070 0.019 0.024

RESCALED 35 N 50 104 0.018 0.016 0.018 0.014 0.016 0.019 0.035 0.013 0.016
36 N 50 208 0.012 0.011 0.011 0.011 0.010 0.013 0.019 0.009 0.010
37 N 100 26 0.035 0.032 0.033 0.033 0.033 0.032 - 0.034

0

0.032
38 N 100 52 0.027 0.025 0.026 0.022 0.025 0.027 - 0.022 0.025
39 N 100 104 0.019 0.018 0.019 0.017 0.018 0.022 0.052 0.016 0.018
40 N 100 208 0.013 0.012 0.012 0.013 0.012 0.016 0.026 0.011 0.012
41 S 50 26 0.050 0.053 0.050 0.089 0.058 0.027 - 0.090

0

0.059
42 S 50 52 0.046 0.047 0.048 0.069 0.051 0.023 0.085 0.068 0.053
43 S 50 104 0.045 0.044 0.047 0.056 0.047 0.023 0.057 0.053 0.050
44 S 50 208 0.043 0.042 0.044 0.050 0.046 0.026 0.044 0.044 0.049
45 S 100 26 0.044 0.044 0.044 0.078 0.049 0.030 - 0.079

0

0.049
46 S 100 52 0.043 0.042 0.044 0.063 0.044 0.031 - 0.062 0.049
47 S 100 104 0.043 0.041 0.042 0.056 0.043 0.034 0.063 0.054 0.049
48 S 100 208 0.042 0.039 0.038 0.053 0.043 0.039 0.041 0.046 0.051

For each estimation method, each universe size, each sample size (expressed in weeks) and each distribution of returns (normal
or Student), we compute three estimated MV portfolios: a long-short one (Panel A), a long-only optimal one (Panel B), and a
long-only one in which negative weights have been eliminated by a heuristic adjustment to the long-short portfolio (Panel C).
The table shows the average (across the 527 true covariance matrices) of the standard deviations (across the 50 estimators) of the
relative increases in volatility (RIV). The RIV measures the increase in volatility which arises from the use of an imperfect estimate
as opposed to the true covariance matrix. The RIV for a given true matrix and a given estimator are defined in (17) for Panel A,
in (20) for Panel B and in (21) for Panel C. Averages are then taken across 50 estimators and 527 true covariance matrices. The
estimators are defined in Table 2. Missing figures for the SAM estimator arise when N > T and the sample covariance matrix is
not invertible.



ESTIMATING COVARIANCE MATRICES FOR PORTFOLIO OPTIMIZATION 29

Table 6. Comparison of estimators on real data – Out-of-sample volatilities of estimated
long-short minimum variance portfolios.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Long-short T = 52 weeks

PCL 0.125 0.123 0.118 0.136 0.111 0.103 0.100 0.117
PCP 0.124 0.136 0.118 0.123 0.113 0.103 0.104 0.117
PCR 0.122 0.122 0.120 0.138 0.127 0.115 0.099 0.120
LWC 0.121 0.122 0.117 0.135 0.127 0.115 0.107 0.121
LWF 0.120 0.119 0.112 0.122 0.108 0.105 0.098 0.112
LWI 0.118 0.117 0.118 0.126 0.108 0.108 0.108 0.115
SAM 0.124 0.129 0.373 0.123 0.126 - - -
CC 0.126 0.130 0.133 0.136 0.134 0.121 0.129 0.130
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.122 0.122 0.120 0.137 0.128 0.118 0.107 0.122
FCW 0.122 0.124 0.122 0.143 0.134 0.126 0.136 0.130
FFF 0.122 0.121 0.115 0.132 0.110 0.103 0.132 0.119

T = 104 weeks
PCL 0.124 0.121 0.118 0.140 0.114 0.103 0.099 0.117
PCP 0.120 0.129 0.118 0.125 0.117 0.103 0.106 0.117
PCR 0.121 0.121 0.119 0.141 0.135 0.122 0.097 0.122
LWC 0.118 0.117 0.115 0.134 0.123 0.114 0.106 0.118
LWF 0.118 0.116 0.113 0.125 0.110 0.107 0.097 0.112
LWI 0.117 0.115 0.116 0.128 0.109 0.111 0.107 0.115
SAM 0.120 0.119 0.132 0.125 0.114 0.301 - -
CC 0.125 0.130 0.136 0.138 0.146 0.136 0.139 0.136
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.121 0.122 0.124 0.141 0.139 0.131 0.112 0.127
FCW 0.122 0.124 0.126 0.146 0.143 0.137 0.140 0.134
FFF 0.121 0.121 0.117 0.133 0.114 0.107 0.136 0.121

T = 208 weeks
PCL 0.126 0.124 0.124 0.136 0.117 0.109 0.105 0.120
PCP 0.119 0.127 0.124 0.124 0.116 0.107 0.114 0.119
PCR 0.122 0.123 0.124 0.137 0.134 0.122 0.099 0.123
LWC 0.118 0.116 0.116 0.128 0.116 0.111 0.107 0.116
LWF 0.119 0.116 0.115 0.123 0.110 0.109 0.099 0.113
LWI 0.118 0.116 0.116 0.126 0.110 0.111 0.110 0.115
SAM 0.119 0.118 0.121 0.124 0.111 0.123 - -
CC 0.126 0.132 0.141 0.135 0.141 0.137 0.151 0.138
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.122 0.123 0.128 0.137 0.138 0.134 0.123 0.129
FCW 0.123 0.125 0.129 0.145 0.145 0.142 0.143 0.136
FFF 0.121 0.121 0.122 0.130 0.117 0.114 0.141 0.124

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights without imposing weight constraints. The table reports the out-of-sample volatility
of these portfolios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise when
N > T , because the sample covariance matrix is not invertible.
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Table 7. Comparison of estimators on real data – Turnovers of estimated long-short minimum
variance portfolios.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Long-short T = 52

PCL 1.062 1.159 1.431 1.012 2.413 2.485 1.194 1.537
PCP 1.440 2.588 1.683 1.771 3.631 2.384 0.985 2.069
PCR 0.820 1.017 1.217 1.045 1.603 1.676 1.218 1.228
LWC 0.740 1.002 1.873 0.858 1.572 2.041 1.640 1.389
LWF 1.071 1.382 1.755 1.555 3.210 3.439 1.329 1.963
LWI 0.749 1.153 2.097 0.703 2.028 3.791 1.368 1.698
SAM 1.440 2.421 21.386 1.771 6.482 - - -
CC 0.644 0.813 0.926 0.855 1.391 1.590 0.997 1.031
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.783 0.969 1.118 1.024 1.530 1.590 0.921 1.134
FCW 0.779 0.964 1.090 0.993 1.377 1.483 0.374 1.009
FFF 0.952 1.160 1.394 2.197 2.241 2.264 0.566 1.539

T = 104
PCL 0.668 0.692 0.977 0.650 1.535 1.824 0.967 1.045
PCP 0.763 1.598 1.173 1.049 2.540 1.773 0.790 1.384
PCR 0.480 0.638 0.849 0.664 1.105 1.241 1.042 0.860
LWC 0.474 0.657 1.400 0.567 1.184 1.678 1.430 1.056
LWF 0.658 0.872 1.291 1.011 2.136 2.958 1.140 1.438
LWI 0.507 0.773 1.537 0.527 1.449 3.507 1.494 1.399
SAM 0.763 1.152 3.260 1.049 2.894 32.366 - -
CC 0.379 0.507 0.609 0.544 0.959 1.106 0.682 0.684
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.466 0.598 0.732 0.653 1.052 1.120 0.644 0.752
FCW 0.460 0.594 0.716 0.624 0.910 1.026 0.251 0.654
FFF 0.549 0.703 0.910 1.360 1.419 1.563 0.382 0.984

T = 208
PCL 0.406 0.444 0.681 0.407 0.922 1.243 0.828 0.704
PCP 0.409 0.989 0.898 0.597 1.582 1.276 0.666 0.917
PCR 0.293 0.422 0.621 0.408 0.735 1.018 0.910 0.630
LWC 0.299 0.429 0.919 0.358 0.802 1.347 1.320 0.782
LWF 0.381 0.540 0.875 0.588 1.283 2.185 1.040 0.985
LWI 0.316 0.485 0.953 0.352 0.939 2.346 1.781 1.025
SAM 0.409 0.623 1.355 0.597 1.475 4.169 - -
CC 0.235 0.331 0.420 0.332 0.657 0.766 0.543 0.469
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.285 0.384 0.506 0.405 0.697 0.775 0.482 0.505
FCW 0.284 0.390 0.497 0.389 0.607 0.705 0.185 0.437
FFF 0.323 0.432 0.602 0.773 0.879 1.047 0.252 0.615

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights without imposing weight constraints. The table reports the turnover of these port-
folios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise when N > T , because
the sample covariance matrix is not invertible.
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Table 8. Comparison of estimators on real data – Out-of-sample volatilities of estimated
minimum variance portfolios subject to long-only constraints.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Optimal long-only T = 52

PCL 0.121 0.120 0.121 0.140 0.135 0.135 0.115 0.127
PCP 0.121 0.121 0.122 0.139 0.136 0.136 0.115 0.127
PCR 0.121 0.120 0.121 0.140 0.136 0.136 0.115 0.127
LWC 0.121 0.121 0.122 0.139 0.136 0.137 0.114 0.127
LWF 0.121 0.120 0.121 0.139 0.136 0.136 0.113 0.127
LWI 0.122 0.121 0.123 0.140 0.135 0.135 0.119 0.128
SAM 0.121 0.121 0.123 0.139 0.136 0.136 0.125 0.129
CC 0.122 0.123 0.123 0.140 0.136 0.138 0.116 0.128
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.121 0.120 0.121 0.140 0.136 0.137 0.115 0.127
FCW 0.121 0.120 0.122 0.139 0.138 0.140 0.137 0.131
FFF 0.121 0.121 0.122 0.139 0.136 0.137 0.135 0.130

T = 104
PCL 0.121 0.120 0.121 0.141 0.137 0.139 0.112 0.127
PCP 0.121 0.121 0.121 0.139 0.138 0.139 0.113 0.127
PCR 0.121 0.120 0.119 0.141 0.138 0.139 0.113 0.127
LWC 0.121 0.120 0.120 0.140 0.138 0.141 0.111 0.127
LWF 0.121 0.120 0.120 0.139 0.137 0.139 0.111 0.127
LWI 0.122 0.121 0.121 0.140 0.137 0.138 0.114 0.128
SAM 0.121 0.120 0.121 0.139 0.137 0.140 0.117 0.128
CC 0.122 0.123 0.123 0.140 0.139 0.143 0.118 0.130
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.121 0.120 0.120 0.141 0.139 0.142 0.115 0.128
FCW 0.121 0.121 0.121 0.140 0.139 0.143 0.140 0.132
FFF 0.121 0.121 0.121 0.139 0.138 0.139 0.138 0.131

T = 208
PCL 0.122 0.120 0.122 0.140 0.137 0.140 0.113 0.128
PCP 0.122 0.122 0.122 0.140 0.137 0.140 0.116 0.128
PCR 0.121 0.121 0.121 0.140 0.137 0.139 0.114 0.128
LWC 0.122 0.121 0.122 0.140 0.137 0.141 0.112 0.128
LWF 0.122 0.121 0.122 0.140 0.137 0.141 0.112 0.128
LWI 0.122 0.122 0.123 0.140 0.137 0.140 0.114 0.128
SAM 0.122 0.121 0.123 0.140 0.137 0.141 0.114 0.128
CC 0.123 0.122 0.126 0.140 0.140 0.144 0.124 0.131
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.121 0.121 0.121 0.140 0.139 0.143 0.120 0.129
FCW 0.121 0.121 0.122 0.140 0.140 0.144 0.144 0.133
FFF 0.121 0.121 0.121 0.140 0.137 0.140 0.142 0.132

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights by numerically solving Program (18). The table reports the out-of-sample volatility
of these portfolios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise when
N > T , because the sample covariance matrix is not invertible.
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Table 9. Comparison of estimators on real data – Turnovers of estimated minimum variance
portfolios subject to long-only constraints.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Optimal long-only T = 52

PCL 0.359 0.376 0.521 0.398 0.637 0.827 0.948 0.581
PCP 0.386 0.437 0.549 0.398 0.657 0.826 0.838 0.584
PCR 0.330 0.371 0.487 0.403 0.599 0.808 0.933 0.562
LWC 0.369 0.414 0.539 0.383 0.634 0.825 0.861 0.575
LWF 0.363 0.390 0.516 0.394 0.642 0.828 0.894 0.575
LWI 0.341 0.392 0.538 0.353 0.559 0.782 0.921 0.555
SAM 0.386 0.414 0.603 0.398 0.660 0.881 1.277 0.660
CC 0.369 0.412 0.486 0.385 0.622 0.802 0.734 0.544
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.323 0.364 0.477 0.399 0.583 0.786 0.812 0.535
FCW 0.315 0.363 0.483 0.364 0.558 0.740 0.381 0.458
FFF 0.350 0.380 0.518 0.410 0.633 0.836 0.578 0.529

T = 104
PCL 0.207 0.212 0.304 0.243 0.412 0.543 0.617 0.363
PCP 0.216 0.267 0.320 0.232 0.428 0.544 0.530 0.362
PCR 0.183 0.218 0.298 0.248 0.388 0.538 0.625 0.357
LWC 0.213 0.227 0.337 0.223 0.412 0.561 0.545 0.360
LWF 0.209 0.230 0.315 0.231 0.414 0.555 0.573 0.361
LWI 0.207 0.231 0.332 0.225 0.369 0.525 0.647 0.362
SAM 0.216 0.237 0.348 0.232 0.424 0.585 0.815 0.408
CC 0.196 0.230 0.277 0.223 0.403 0.547 0.417 0.328
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.180 0.210 0.279 0.245 0.378 0.517 0.484 0.328
FCW 0.174 0.206 0.288 0.218 0.343 0.474 0.254 0.280
FFF 0.189 0.214 0.306 0.231 0.419 0.535 0.383 0.325

T = 208
PCL 0.119 0.116 0.179 0.142 0.227 0.335 0.413 0.219
PCP 0.121 0.160 0.196 0.142 0.248 0.332 0.395 0.228
PCR 0.096 0.127 0.179 0.143 0.219 0.312 0.413 0.213
LWC 0.116 0.127 0.201 0.137 0.234 0.344 0.360 0.217
LWF 0.117 0.133 0.193 0.141 0.235 0.346 0.371 0.219
LWI 0.121 0.136 0.202 0.138 0.218 0.329 0.436 0.226
SAM 0.121 0.136 0.212 0.142 0.236 0.362 0.510 0.246
CC 0.111 0.125 0.158 0.137 0.240 0.336 0.248 0.194
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.095 0.116 0.164 0.142 0.227 0.322 0.295 0.194
FCW 0.094 0.116 0.168 0.128 0.210 0.282 0.185 0.169
FFF 0.101 0.119 0.178 0.133 0.231 0.313 0.247 0.189

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights by numerically solving Program (18). The table reports the turnover of these
portfolios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise when N > T ,
because the sample covariance matrix is not invertible.
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Table 10. Comparison of estimators on real data – Out-of-sample volatilities of estimated
minimum variance portfolios with rescaled weights.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Rescaled T = 52

PCL 0.127 0.130 0.137 0.142 0.144 0.146 0.122 0.135
PCP 0.131 0.139 0.139 0.147 0.147 0.146 0.121 0.139
PCR 0.124 0.128 0.134 0.142 0.141 0.144 0.122 0.134
LWC 0.124 0.127 0.137 0.140 0.139 0.143 0.122 0.133
LWF 0.129 0.132 0.139 0.146 0.145 0.149 0.123 0.138
LWI 0.127 0.132 0.144 0.143 0.144 0.153 0.137 0.140
SAM 0.131 0.136 0.160 0.147 0.149 - - -
CC 0.124 0.127 0.133 0.140 0.139 0.142 0.118 0.132
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.125 0.128 0.134 0.142 0.141 0.144 0.118 0.133
FCW 0.125 0.128 0.133 0.139 0.139 0.144 0.137 0.135
FFF 0.127 0.129 0.135 0.148 0.143 0.146 0.135 0.138

T = 104
PCL 0.127 0.130 0.138 0.143 0.145 0.148 0.128 0.137
PCP 0.130 0.138 0.140 0.147 0.149 0.148 0.121 0.139
PCR 0.124 0.128 0.134 0.142 0.143 0.146 0.124 0.134
LWC 0.124 0.127 0.138 0.141 0.141 0.146 0.125 0.135
LWF 0.128 0.132 0.140 0.147 0.147 0.151 0.126 0.139
LWI 0.127 0.132 0.144 0.144 0.145 0.154 0.139 0.141
SAM 0.130 0.134 0.150 0.147 0.148 0.163 0.150 -
CC 0.124 0.127 0.134 0.141 0.141 0.146 0.120 0.133
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.124 0.129 0.135 0.143 0.143 0.147 0.119 0.134
FCW 0.125 0.129 0.134 0.140 0.141 0.147 0.140 0.137
FFF 0.126 0.130 0.135 0.149 0.145 0.148 0.138 0.139

T = 208
PCL 0.128 0.130 0.140 0.143 0.147 0.151 0.126 0.138
PCP 0.128 0.138 0.142 0.148 0.151 0.151 0.125 0.140
PCR 0.124 0.129 0.135 0.142 0.144 0.148 0.128 0.136
LWC 0.125 0.128 0.140 0.142 0.143 0.149 0.130 0.137
LWF 0.128 0.133 0.142 0.148 0.149 0.154 0.130 0.141
LWI 0.127 0.133 0.143 0.145 0.147 0.155 0.144 0.142
SAM 0.128 0.134 0.146 0.148 0.149 0.157 - -
CC 0.124 0.127 0.136 0.142 0.143 0.149 0.123 0.135
ID 0.150 0.160 0.170 0.158 0.161 0.169 0.164 0.162

FEW 0.124 0.129 0.136 0.143 0.145 0.150 0.121 0.135
FCW 0.125 0.129 0.135 0.140 0.142 0.149 0.144 0.138
FFF 0.136 0.130 0.137 0.150 0.146 0.150 0.143 0.142

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights as follows: first, unconstrained weights are computed, and second, the rescaling
procedure described in (19) is applied to obtain nonnegative weights. The table reports the out-of-sample
volatility of these portfolios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise
when N > T , because the sample covariance matrix is not invertible.



34 GUILLAUME COQUERET AND VINCENT MILHAU

Table 11. Comparison of estimators on real data – Turnovers of estimated minimum variance
portfolios with rescaled weights.

Ind10 Ind17 Ind48 FF6 FF25 FF96 SPX Average
Rescaled T = 52

PCL 0.359 0.360 0.431 0.286 0.428 0.500 0.509 0.410
PCP 0.454 0.609 0.483 0.395 0.530 0.486 0.450 0.487
PCR 0.308 0.340 0.385 0.319 0.370 0.407 0.516 0.378
LWC 0.341 0.382 0.516 0.300 0.403 0.506 0.562 0.430
LWF 0.388 0.430 0.487 0.378 0.532 0.616 0.544 0.482
LWI 0.344 0.417 0.557 0.273 0.450 0.634 0.529 0.458
SAM 0.454 0.554 1.197 0.395 0.704 - - -
CC 0.314 0.333 0.365 0.304 0.369 0.438 0.420 0.363
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.298 0.329 0.362 0.305 0.354 0.398 0.427 0.353
FCW 0.298 0.321 0.355 0.299 0.347 0.387 0.349 0.337
FFF 0.344 0.364 0.416 0.385 0.408 0.474 0.477 0.410

T = 104
PCL 0.223 0.209 0.285 0.178 0.258 0.328 0.354 0.262
PCP 0.268 0.416 0.315 0.244 0.355 0.320 0.305 0.318
PCR 0.177 0.207 0.258 0.197 0.229 0.270 0.372 0.244
LWC 0.215 0.241 0.363 0.187 0.278 0.357 0.405 0.292
LWF 0.243 0.269 0.343 0.238 0.358 0.447 0.389 0.327
LWI 0.224 0.262 0.392 0.179 0.304 0.483 0.443 0.327
SAM 0.268 0.309 0.526 0.244 0.409 1.100 - -
CC 0.177 0.199 0.226 0.189 0.228 0.273 0.289 0.226
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.173 0.197 0.228 0.188 0.221 0.252 0.265 0.218
FCW 0.171 0.195 0.225 0.176 0.213 0.241 0.238 0.208
FFF 0.200 0.219 0.264 0.235 0.241 0.294 0.333 0.255

T = 208
PCL 0.134 0.125 0.183 0.108 0.143 0.197 0.267 0.165
PCP 0.156 0.267 0.228 0.140 0.213 0.202 0.225 0.204
PCR 0.102 0.129 0.172 0.116 0.131 0.189 0.276 0.159
LWC 0.128 0.152 0.232 0.121 0.167 0.243 0.311 0.193
LWF 0.147 0.168 0.226 0.139 0.204 0.305 0.299 0.213
LWI 0.139 0.165 0.243 0.111 0.180 0.315 0.397 0.221
SAM 0.156 0.179 0.277 0.140 0.218 0.411 - -
CC 0.103 0.117 0.139 0.112 0.136 0.163 0.162 0.133
ID 0.043 0.047 0.061 0.031 0.035 0.044 0.106 0.052

FEW 0.101 0.118 0.144 0.112 0.129 0.154 0.179 0.134
FCW 0.100 0.119 0.144 0.102 0.124 0.145 0.178 0.130
FFF 0.115 0.134 0.165 0.128 0.137 0.176 0.229 0.155

For each dataset (see definitions and time spans in Table 3), each sample size (as measured by T ) and each of
the twelve regularization methods, we estimate one covariance matrix per quarter and we compute estimated
minimum variance weights as follows: first, unconstrained weights are computed, and second, the rescaling
procedure described in (19) is applied to obtain nonnegative weights. The table reports the turnover of these
portfolios. The estimators are defined in Table 2. Missing figures for the SAM estimator arise when N > T ,
because the sample covariance matrix is not invertible.
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