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References

A few classical/useful monographs:

I Deep Learning by Goodfellow, Bengio and Courville (2015).
I Neural networks and statistical learning by Du and Swamy (2013)
I Deep Learning with Python/R by Chollet (/Allaire) (2018-2022)

Caution: the term neural network is misleading, it has little to do with the human brain (of
which we know relatively little). F. Chollet defined NN as
“chains of differentiable, parameterised geometric functions, trained with gradient descent
(with gradients obtained via the chain rule)”.
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History

Some milestones

I 1957: first perceptron by Rosenblatt
I 1986: first applications of backpropagation for multilayer perceptrons
I 1997: invention of LSTM, a popular recurrent NN
I ...
I acceleration and diversification since 2012 (AlexNet at ImageNet divided the error

rate by 2, from 30% to 15%!): use of CNN for computer vision, RNN for translation,
AlphaGo/AlphaZero/AlphaStar via RL, etc.

→ the basic ideas are pretty old!
NN have been considered since the 1990s for financial prediction (mostly by computer
scientists), but it’s only since the 2010s that they have reached their full potential (still
developing).
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Notations

Valid for the whole deck.
I The data is separated into a matrix X = xi,j of features and a vector of output values

y = yi . x or xi denotes one line of X .
I A neural network will have L layers.
I For each layer l , the number of units is Ul .
I The weights for unit k located in layer l are denoted with w (l)

k = w (l)
k,j and the

corresponding biases b(l)
k . The length of w (l)

k is equal to Ul−1. k refers to the location
of the unit in layer l while j to the unit in layer l − 1.

I Outputs (post activation) are denoted o(l)
i,k for instance/occurrence i , layer l and unit k .

I All vectors are column vectors, v ′ is the transpose of v .
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The simple building block
The original aim of the perceptron is binary classification. Let’s say in our case that the
output is {0 = do not invest} versus {1 = invest} (e.g., derived from return, negative vs
positive).

Activated linear mapping!

The model is the following:

f (x) =
{

1 if x ′w + b > 0
0 otherwise

The vector of weights w scales the variables and the bias b shifts the decision barrier.

Given values for b and wi , the error is εi = yi − 1{∑J
j=1 xi,j wj+w0>0}.

We set b = w0 and add an initial constant column to x : xi,0 = 1, so that
εi = yi − 1{∑J

j=0 xi,j wj}.
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Training (illustration)
How to minimise the error? 6= regression: no closed form solution!
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Training (in practice)

Each (training) data point participates to the determination of the wi .

The updating algorithm (learning) is the following

for each pair of data (yi , xi ),
1. compute the current model value at point xi : ỹi = 1{∑J

j=0 wj xi,j>0},

2. adjust the weight: wj ← wj + η(yi − ỹi)xi,j ,
where η > 0 is the learning rate: a small η will only marginally alter the weights, but a
large η might move them too far. Usually, η < 1. When η is very small, convergence is
slow but almost sure; when it is large, convergence is faster but unsure.
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Combinations of perceptrons
Usual representation (source: butleranalytics):

This hides what is really happening: there is a perceptron inside the green circles!
The green phase is a layer, and there can be many→ deep network.
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The complete scheme (example)
Data
(Input) Output

x1 x'ii,1
(1)(1) (1)w1 + b1v =

(l)

i,kv

x2

x3

x4

First Layer
(3 units)

Second Layer
(2 units)

wk
(l)

Notation:
index of layer
index of unit

index of layer
index of unit

index of
occurrence

Weights Intermed. Values

Activation
Function

First unit

o(1)
i

o(1)
i '

(2) (2)w1 + b1
(2)

i,1v =
First unit

o(1)
i '

(2) (2)w2 + b2
(2)

i,2v =
Second unit

x'ii,2
(1)(1) (1)w2 + b2v =

Second unit Output

x'ii,3
(1)(1) (1)w3 + b3v =

Third unit

o i,k= f
(1)(vi,k)(1)

Nonlinear
Transform

Yields a vector
for each
data point i

} Aggregation
via linear
mapping
with
possible
posterior
activation

output sent to next layer

Yields one
point for
each initial
occurrence

Activation functions are usually
indexed according to the layer
they succeed

c G. Coqueret
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A formal definition
Here it goes (case with simple real output)

values:

v (1)
i,k = x ′i w

(1)
k + b(1)

k , for l = 1, k ∈ [1,U1]

v (l)
i,k = (o(l−1)

i )′w (l)
k + b(l)

k , for l ≥ 2, k ∈ [1,Ul ]

output:

o(l)
i,k = f (l)

(
v (l)

i,k

)
terminal:

ỹi = f (L+1)
(
(o(L)

i )′w (L+1) + b(L+1)
)

i is data row number, l is layer number, k ∈ [1,Ul ] is unit number.
The last activation function can simply be the identity function f (L+1)(x) = x .
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Fundamental property
Universal approximation
Any continuous function f can be approximated up to arbitrary precision (on a finite
interval) by a single layer perceptron with smooth (bounded continuous) activation
function. How come? You just need to add units to help the perceptron overfit!
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Activation functions
They induce the nonlinearity.
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Backpropagation (1/6)

A idea simple in theory

The aim is to minimise the total error / distance / discrepancy

E =
N∑

i=1

d(yi , ỹi(W )) :=
N∑

i=1

D(ỹi),

where W encompasses all parameters, i.e., all weights and all biases of all units of all
layers (in computer vision, there are millions of parameters). Each term of the sum can be
minimised separately through gradient descent. The updating of weights is done through

W ←W − η ∂D(ỹi)

∂W

The computation of ∂D(ỹi )
∂W is a real challenge because of all the layers! Note, we will often

work with D(x) = (x − yi)
2 (quadratic error, the classical choice for regression analysis).
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Gradient Descent
In one illustration, in dimension 1:

ERROR

First iteration
First iteration

Second iterationSecond iteration

starting point
(negative derivative)

Large learning rate
Small learning rate

WEIGHT
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Backpropagation (2/6)
We recall v (l)

i,k = (o(l−1)
i )′w (l)

k + b(l)
k = b(l)

k +
∑Ul

j=1 o(l−1)
i,j w (l)

k,j .

Parameters
For each layer and each unit k , we must ‘estimate’ (find, optimise) the best possible
values for w (l)

k and b(l)
k .

I For the first layer, this gives (U0 + 1)U1 parameters, where U0 is the number of
columns in X (i.e., number of explanatory variables)

I For layer l ∈ [2,L], the number of parameters is (Ul−1 + 1)Ul

I For the final output, there are simply UL + 1 parameters
I In total, this means the total number of values to optimise is

N =

(
L∑

l=1

(Ul−1 + 1)Ul

)
+ UL + 1
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Backpropagation (3/6)
We recall:
ỹi = f (L+1)

(
(o(L)

i )′w (L+1) + b(L+1)
)
= f (L+1)

(
b(L+1) +

∑UL
k=1 w (L+1)

k o(L)
i,k

)
First step: last weights and bias

∂D(ỹi)

∂w (L+1)
k

= D′(ỹi)
(

f (L+1)
)′b(L+1) +

UL∑
k=1

w (L+1)
k o(L)

i,k

 o(L)
i,k

= D′(ỹi)
(

f (L+1)
)′ (

v (L+1)
i,k

)
o(L)

i,k

∂D(ỹi)

∂b(L+1) = D′(ỹi)
(

f (L+1)
)′b(L+1) +

UL∑
k=1

w (L+1)
k o(L)

i,k


Henceforth, we leave the case of the bias aside, as it can be considered as a particular case of a
weight.

19 / 38



©GuillaumeCoqueret

supervised
learning
factor
investing

Backpropagation (4/6)
We recall v (l)

i,k = (o(l−1)
i )′w (l)

k + b(l)
k = b(l)

k +
∑Ul

j=1 o(l−1)
i,j w (l)

k,j .

Propagation through the chain rule
For one particular weight in layer L, the impact is channelled through all outputs o(L)

k . The chain rule
(composition of function) yields

∂D(ỹi)

∂w (L)
k,j

=
∂D(ỹi)

∂v (L)
i,k

∂v (L)
i,k

∂w (L)
k,j

=
∂D(ỹi)

∂v (L)
i,k

o(L−1)
i,j

=
∂D(ỹi)

∂o(L)
i,k

∂o(L)
i,k

∂v (L)
i,k

o(L−1)
i,j =

∂D(ỹi)

∂o(L)
i,k

(f (L))′(v (L)
i,k )o

(L−1)
i,j

= D′(ỹi)
(

f (L+1)
)′ (

v (L+1)
i,k

)
w (L+1)

k (f (L))′(v (L)
i,k )o

(L−1)
i,j

To access D(ỹi) from w (L)
k,j ,

w (L)
k,j ← v (L)

i,k ← o(L)
i,k (i.e., f (L))← D(ỹi)
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Backpropagation (5/6)
I The process continues iteratively (i.e., backwards until the beginning of the network). Luckily,

there is a simple ‘form’ or ‘trick’ to derive the derivatives in a greedy manner.
I The idea is to recycle the computation from layer l for ayer l − 1 (there is only one new term to

calculate for each new node).
I We recommend Section 4.3 from Du and Swamy (2013) for more details on the topic.

data points
model (weights)

layer 1 layer 2 output (prediction)

the data... is processed...
by the model...

and gives a prediction

from the prediction
we get the error

y~i

y~iei i= y -
from the error,
we compute the
weight
updates

∂D(ỹi)
∂W

...

...

...
weight

update

weight
update
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Backpropagation (6/6)
Back to E =

∑N
i=1 D(ỹi). How often are the weights updated?

I Batch update: take the full training sample (needs memory, rare updates);
I SGD (stoch. grad. desc): update one instance at a time (lots of noisy updates),
I mini-batch: in between: use blocks of data. Best of two worlds?

Terminology

I batch size: number of samples used to update the weights. Each sample has one forward
and backward pass with the ‘old’ weights. After the whole batch has passed, the weights are
updated

I epoch: one forward and backward pass of the whole training sample
I iteration: the number of passes. Sometimes, it’s the number of passes required to achieve on

epoch, sometimes, it’s the total number of passes (i.e., the previous one multiplied by the
number of epochs).

Total updates = (nb epochs) * N / (batch size).
Usually, for large samples, the batch size is between 20 and 2000 (often in powers of 2, like 512 and 1024).
The user will be asked to specify both the batch size and the number of epochs.
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Classification
Obviously, the problem is different.

Multidimensional output
When the output is a nominal category, the output for one occurrence is not one single number,
but a vector (usually stemming from one-hot encoding). E.g.:

red 1 0 0
green 0 1 0
blue 0 0 1

If the output colour is green, the the vector is (0,1,0). Hence, the output (final layer) of the network
must also be a vector. Usually, it’s a vector of numbers that sum to one which indicate the
‘probability’ of the occurrence to belong to each category. Like (0.1,0.8,0.1) would be an indication
towards green. One typical activation function in this case is the softmax function:

s(x)i =
exi∑K
j=1 exj

,

where x is K -dimensional and s(x)i is the i th element of the output vector.
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Deep learning?

How deep should we go?
In Finance, not too deep! (3-4 hidden layers at most)

Network size
First, the so-called geometric pyramid rule: the number of units decreases geometrically as the
network advances. If there are L hidden layers, with I features in the input and O dimensions in the
output (often, O = 1), then, for the k th layer, a rule of thumb for the number of units is

Uk = O
(

I
O

) L+1−k
L+1

If there is only one intermediate layer, the recommended proxy is
√

IO.

Second, sadly, there is no rule that sets the number of parameters (weights+biases) depending on
the number of features and observations. It is recommended that N be smaller than a small
fraction of the number of observations (usually 20% or 10% at most).
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Simple rule
(simple slide)

Layer
1

Layer
2

Layer
3

Layer
4

141664

The geometric rule Sample / parameter ratio

N =
sample
size =
# rows

M = # parameters
(biases+weights)

N/M >> 10

(example)
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Principle
By definition, MLP:
I are feed-forward (one direction)
I have no memory

In some cases with sequential linkages (e.g., time-series or speech recognition), it might be useful
to keep track of what happened with the previous sample (i.e., there is a natural ordering).

In short, with one layer

ỹi = f (2)

 U1∑
j=1

oi,j w
(2)
j + b(2)


oi,j = f (1)

 U0∑
k=1

xi,k w (1)
k + b(1) +

U1∑
k=1

W (h)
k oi−1,k


RNN can be viewed/unfolded as high dimensional feed-forward networks.
Problem: vanishing gradients. The derivative values at the node in the backprop are smaller than
one in absolute value (e.g., tanh). Iterative (BPTT) multiplications imply adjustments close to zero in
the early layers.
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Unfolding Recurrent networks

Data
(input)

x1

x2

x3

h = f (W x + b + W h )1 1 0
(h,1)(h) (h,2)(h)

h = f (W x + b + W h )2 2 1
(h,1)(h) (h,2)(h)

h = f (W x + b + W h )3 3 2
(h,1)(h) (h,2)(h)

y = f (W h + b )3 3
(y)(y) (y)~

~y = f (W h + b )2 2
(y)(y) (y)

~y = f (W h + b )1 1
(y)(y) (y)

.

.

.

.

.

.

.

.

.

Hidden layer Output value

The first instance impacts all the network; the last instance impacts only the last layer.
Problem: the successive iterations of the activation function yield vanishing gradients.
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Gated Recurrent Units (GRU)
(see also Long-Short Term Memory, LSTM for another popular RNN) The processes add
‘memory gates’ at several stages.

The definition (see Cho et al. (2014))

ỹi = zi ỹi−1 + (1− zi) tanh
(
w ′y xi + by + uy ri ỹi−1

)
output

zi = sig(w ′zxi + bz + uz ỹi−1) ‘update gate’ ∈ (0,1)
ri = sig(w ′r xi + br + ur ỹi−1) ‘reset gate’ ∈ (0,1)

ỹi = zi︸︷︷︸
weight

ỹi−1︸︷︷︸
past value

+(1− zi)︸ ︷︷ ︸
weight

tanh
(
w ′y xi + by + uy ri ỹi−1

)︸ ︷︷ ︸
candidate value (classical RNN)

zi : current and past values decide the optimal mix between the two.
ri : for the candidate value, ri decides which amount of past to retain.
→ Because of dimension constraints, training of these models is not simple!
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Other NN architectures

The family of NNs is diverse!

I Convolutional Neural Networks: mostly used for computer vision because they
progressively reduce the dimension of the input (image = rectangle of pixels =
matrices of numbers between 0 and 255 - one layer for RGB).

I Autoencoders: the input is transformed through the network but the purpose is to
find an output as close as possible to the input (i.e., input = output!). This helps find a
simpler representation of the input (nonlinear PCA).

I Generative Adversarial Networks: two networks compete. The first one seeks to
optimize a loss function, but the second one is tweaking the data to make it harder for
the first one to reach its goal.

I Tabular Networks: NNs for tabular data!
I Transformers: for NLP (and more?)
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Keras (1/4) !!!

Great high-level API. See
I https://keras.io for the original Python implementation
I https://keras.rstudio.com/ for the R version

In four steps

1. architecture definition
2. loss function & optimisation
3. the fit/train line
4. prediction
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Keras (2/4)
Architecture
We will use 2 types of layers: dense (classical) and GRU. The inputs/arguments are (don’t copy
paste):

1. layer dense(units = 32,
activation = ‘relu’,
input shape = c(ncol(train data)))

2. layer gru(units = 32,
activation = ‘tanh’,
recurrent activation = ‘hard sigmoid’,
use bias = TRUE)

I All arguments are straightforward: they correspond to the concepts seen above.
I The input shape is only required for the first layer.
I It is possible to specify the initialisation of weights.
I A list of activation functions can be found:

https://keras.rstudio.com/reference/activation relu.html
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Keras (3/4)

Loss functions and optimisation

The syntax is easy:

model %>% compile(
loss = ‘mean absolute error’,
optimizer = optimizer rmsprop(),
metrics = c(‘mean absolute error’)

)

I All arguments are again straightforward.
I Other optimisers and loss functions are possible (see Optimizers and Losses in

Keras Reference).
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Keras (4/4)
Finally,

NN <- model %>% fit(
training features,
training label,
epochs = 30,
batch size = 32,
validation data = list(testing features, testing label)

)
plot(NN) # to see convergence of loss

I The first two lines correspond to the training data.
I The next two inputs to training parameters.
I Finally, the last line specifies the testing sample.
I The plot show the improvement of performance w.r.t. the number of epochs

Training & prediction are more tricky for RNN.
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In short

Remember

I NN are compositions of linear mappings with intermediate non-linear
activations

I training is done through backpropagation of gradient / errors
I Keras is a great tool to implement NN easily

Overfitting/generalisation is a major issue.
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Thank you for your attention

Any questions?
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