
©GuillaumeCoqueret

supervised
learning
factor
investing

Decision Trees & Extensions



©GuillaumeCoqueret

supervised
learning
factor
investing

Why decision trees?

Several related reasons

I they are known to perform very well on structured/rectangular data: typically the
type of financial data (if we exclude alt-data)

I they (i.e., their extensions) are probably the most popular solutions among winning
solutions in Kaggle competitions

I they are often easy to understand and to interpret (at least through variable
importance)

2 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Why again?

3 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Agenda

1 Principle & Examples

2 Extensions

3 Variable importance

4 Wrap-up

4 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Introduction

Difference with linear approaches

Linear approach:
yi = α + β(1)x (1)

i + · · ·+ β(K )x (K )
i + εi

The issue here is that all variables have the same impact on all observations!
BUT: maybe accounting ratios have different meanings across sectors, or across firm
size.
There are much more complicated functions yi = f (xi ) + εi !
→ Trees are models that form clusters based on x such that the clusters are
homogeneous in y .
In portfolio management, y is related to performance, say, return. Hence depending on x ,
some clusters will have low average y (e.g., return) and others high average y . Those are
the ones we will want to invest in!

5 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

A basic example
y is the colour of the star (to be predicted), x(1) is the size of the star, x(2) is the shape
(complexity) of the star.

complicated
stars

simple
stars

small
stars

small
stars

large
stars

large
stars

Usual non-financial example: Obama-Clinton votes from NY Times

6 / 29

https://archive.nytimes.com/www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html


©GuillaumeCoqueret

supervised
learning
factor
investing

Diamonds
Splits, splits, it’a all about splits!
What are the drivers of their prices? Cut, colour, clarity... size?

carat < 1

carat < 0.63 carat < 1.5

clarity = I1,SI2,SI1,VS2 carat < 1.9

3933
100%

1633
65%

1052
46%

3059
19%

8142
35%

6140
24%

5371
18%

8535
6%

12e+3
12%

11e+3
8%

15e+3
4%

yes no

The size, of course, but not only!
→ in rpart, from the condition under the node, it’s always: TRUE to the left and FALSE to
the right.

7 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Process (1/3)

A large majority of trees work with binary splits (so will we).

A simplified case: how to choose splitting points?
Imagine we work with only one explanatory variable x . In the case of diamonds, let’s assume we
only consider the size (weight in carats). What’s the best possible (initial) split?
Since we seek homogeneous clusters, total quadratic variation/dispersion is a good start:

V (c) =
∑

i:carat>c

(pi − p̄carat>c)2

︸ ︷︷ ︸
large diamond cluster (>c)

+
∑

i:carat<c

(pi − p̄carat<c)2

︸ ︷︷ ︸
small diamond cluster (<c)

p̄carat>c is the average price of all diamonds with weight larger than c.

This split yields a decomposition that is smaller than the original total variation (scaled variance):
TV =

∑
i (pi − p̄)2. The gain is

G(c) = TV − V (c)

8 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Process (2/3)

4e+11

5e+11

6e+11

7e+11

8e+11

1 2 3 4threshold

to
ta

l_
va

r

Minimum point at 1 carat. No other feature can achieve this low level of total dispersion.

9 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Process (3/3)

The full splitting process can be described as:

For each node / cluster:

1. Find the best splitting point for each variable.
2. Determine which variable achieves the highest gain (reduction in loss or objective)
3. Split according to this variable→ two new clusters!

This is performed until some condition is met (improvement of gain becomes too small or
sufficient depth is reached).

10 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Categorical output
When working with numerical outputs, the variance is the natural dispersion metrics: it
measures how (in-)homogeneous a cluster is. Things are more complicated for
categorical data and several solutions exist. All metrics are based on the proportions of
classes within a node: pk .

Examples:

I the Gini impurity index: 1−
∑K

k=1 p2
k

I the misclassification error: 1−max
k

pk

I cross-entropy: −
∑K

k=1 log(pk )pk

The tree is built by minimising one of these values at each split. 1

It is also possible to weight loss according to categories (some errors are sometimes
more costly than others)→ loss matrix.

1Note: the Gini index is related to the Herfindahl index (portfolio diversification)

11 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Example

Say we have 3 classes: buy, hold and sell. Inside a cluster, the proportion of signals are:

config. buy hold sell Gini coef misclassif.
1 0.9 0.1 0.0 1−0.92−0.12=0.18 1−0.9=0.1

2 0.3 0.4 0.3 1−2×0.32−0.42=0.66 1−0.4=0.6

Clearly, the second configuration has a higher (hence less diversified) score.
→ In the first case, the decision is obvious (buy) because the cluster is quite pure,
whereas in the second cas, the decision in much more complicated, as all classes are
balanced.

12 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Categorical features

Test all configurations!

I Splitting is only computationally feasible for a small number of classes.
I Indeed, given q classes, there are 2q−1 − 1 ways to split the data.
I 10 classes imply ∼500 partitions - this is probably already too much, especially if

there are many predictors.

In fact, there are some tricks to speed up the computation when y is numerical. The idea
is to rank classes according to their mean in the output variable and to treat them as an
ordered variable (the number of splits is greatly reduced: linear in q!).2

(for multiclass output, there is no simple way out)

2See Sec. 9.2.4 in the Elements of Statistical Learning for more details.

13 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Financial data
On rescaled features:

Mkt_Cap >= 0.52

Prof_Marg < 0.35

D2E >= 0.85 P2B >= 0.98

D2E >= 0.12

P2B >= 0.12 Vol_1M < 0.82

0.0065
100%

0.002
50%

-0.008
8%

-0.066
1%

-0.0025
8%

0.0041
42%

-0.027
1%

0.0046
41%

0.011
50%

0.0098
48%

0.0081
43%

0.022
6%

0.043
2%

0.011
1%

0.075
1%

yes no

The first splitting variables are the most important.

14 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Agenda

1 Principle & Examples

2 Extensions

3 Variable importance

4 Wrap-up

15 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Random forests (1/2)

I Given one splitting rule and one dataset, there is only one optimal tree.
I RF pick random combinations of features to build aggregations of trees. This

technique is called ‘bagging’.
I Each output value is the average of the outputs obtained over all trees.

(0.1-0.05+0.25)/3 = 0.1

Tree 1 Tree 2 Tree 3

+0.1 -0.05 +0.25

(or majority voting if categorical output)

16 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Random forests (2/2)

Options when building the forests:

I fix the depth / complexity of the tree (just as for simple trees);
I select the number of features to retain for each individual learner (tree); they are

randomly selected;
I determine the sample size required to train the learners (subsampling).

Random forests are more complex and richer than simple trees.
One cool feature: RFs don’t have a huge tendency to overfit. Thus, most of the time,
their performance is higher.

17 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (1/6)

Idea
Like RFs, boosted trees aggregate trees. The model can be written as:

ỹi = mJ(xi ) =
J∑

j=1

Tj (xi ),

where i is the index of the occurrence (e.g., stock-date pair) and J is the number of trees.
We thus has the following simple relationship when we add a new tree to the model:

mJ(xi ) = mJ−1(xi )︸ ︷︷ ︸
old trees

+ TJ(xi )︸ ︷︷ ︸
new tree

When the previous model is built, how do we choose the new tree?
→ the model is constructed iteratively.

18 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (2/6)
We follow the approach of XGBoost (Chen & Guestrin (2016)).

Objective

What we seek to minimise (objective) is

O =
I∑

i=1

loss(yi , ỹi )︸ ︷︷ ︸
error term

+
J∑

j=1

Ω(Tj )︸ ︷︷ ︸
regularisation term

The first term (over all instances) measures the distance between the true label and the
output from the model ỹi . The second term (over all trees) penalises models that are too
complex.

For simplicity, we will work with loss(y , ỹ) = (y − ỹ)2:

O =
I∑

i=1

(yi −mJ−1(xi )− TJ(xi ))2 +
J∑

j=1

Ω(Tj )

19 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (3/6)
We have built tree TJ−1 (and hence model mJ−1): how to choose tree TJ? Decompose the
objective:

O =
I∑

i=1

(yi −mJ−1(xi )− TJ (xi ))2 +
J∑

j=1

Ω(Tj )

=
I∑

i=1

{
y2

i + mJ−1(xi )
2 + TJ (xi )

2
}

+
J−1∑
j=1

Ω(Tj ) + Ω(TJ )

− 2
I∑

i=1

{yimJ−1(xi ) + yiTJ (xi )−mJ−1(xi )TJ (xi ))} cross terms

=
I∑

i=1

{
−2yiTJ (xi ) + 2mJ−1(xi )TJ (xi )) + TJ (xi )

2
}

+ Ω(TJ ) + c

The red terms are known at step J!
→ things are simple with quadratic loss. For more complicated loss functions, Taylor expansions
are used.

20 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (4/6)

We need to take care of the penalisation now. For a given tree T , we specify tree T (x) = wq(x),
where w is the output value of some leaf and q(·) is the function that maps an input to its final leaf.
We write l = 1, . . . , L for the indices of the leafs of the tree. In XGBoost, complexity is defined as:

Ω(T ) = γL +
λ

2

L∑
l=1

w2
l ,

where
I the first term penalises the total number of leaves
I the second term penalises the magnitude of output values (this helps reduce variance).

Below, we omit the index (J) of the tree of interest (i.e., the last one). Moreover, we write Il for the
set of the indices of the instances belonging to leaf l .

21 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (4b/6)

Illustration of q and w :

carat < 1

carat < 0.63 carat < 1.5

clarity = I1,SI2,SI1,VS2 carat < 1.9

3933
100%

1633
65%

1052
w

3059
w

8142
35%

6140
24%

5371
w

8535
w

12e+3
12%

11e+3
w

15e+3
w

yes no

1 2 3 4 5 6

q(.)

q defines the path
to the leaf

22 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (5/6)
We aggregate both sections of the objective:

O = 2
I∑

i=1

{
yiTJ (xi )−mJ−1(xi )TJ (xi )) +

TJ (xi )
2

2

}
+ γL +

λ

2

L∑
l=1

w2
l

= 2
I∑

i=1

{
yiwq(xi ) −mJ−1(xi )wq(xi )) +

w2
q(xi )

2

}
+ γL +

λ

2

L∑
l=1

w2
l

= 2
L∑

l=1

wl

∑
i∈Il

(yi −mJ−1(xi )) +
w2

l

2

∑
i∈Il

(
1 +

λ

2

)+ γL

→ w∗l = −
∑

i∈Il
(yi −mJ−1(xi ))(

1 + λ
2

)
#{i ∈ Il}

,

OL(q) = −1
2

L∑
l=1

(∑
i∈Il

(yi −mJ−1(xi ))
)2

(
1 + λ

2

)
#{i ∈ Il}

+ γL

which gives the optimal weights (or leaf scores) and objective value.3
3f (x) = ax + b

2 x2: min at x∗ = −a/b, min value = −a2/(2b).

23 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Boosted trees: principle (6/6)
Final problem: the tree structure! This is the q function essentially. For instance: what’s the best
depth? Do we continue to grow the tree or not?
I we proceed node by node
I for each node, we look at whether a split is useful (in terms of objective) or not:

Gain =
1
2

(GainL + GainR −GainO)− γ

I each gain is computed with respect to the instances in each bucket:

GainX =

(∑
i∈IX

(yi −mJ−1(xi ))
)2

(
1 + λ

2

)
#{i ∈ IX}

,

where IX is the set of instances within cluster X .

GainO is the original gain (no split).
−γ: one unit of new leaves: two minus one!
NOTE: XGBoost also applies a learning rate: each new tree weight is multiplied by η.

24 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Agenda

1 Principle & Examples

2 Extensions

3 Variable importance

4 Wrap-up

25 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Interpretability!

Definition = gain allocation!

I Each time a split is performed according to one variable/feature, the objective
function is reduced

I This gain is entirely attributed to the variable
I If we sum the gains obtained by all variables over all trees and normalise them in the

cross-section of features, we get the relative importance of each feature!

Vf ∝
N∑

n=1

Gn(f ),

where f is the index of the feature and Gn(f ) the gain associated to feature f at node n
(positive if the split is performed according to f and zero otherwise).

26 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Agenda

1 Principle & Examples

2 Extensions

3 Variable importance

4 Wrap-up

27 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Key takeaways

Trees are powerful

I they organise the data into homogeneous clusters in a highly nonlinear fashion
I extensions help improve the predictive performance by aggregating several trees
I variable importance is a first step towards interpretability (global in this case)

28 / 29



©GuillaumeCoqueret

supervised
learning
factor
investing

Thank you for your attention

Any questions?

29 / 29


	Principle & Examples
	Extensions
	Variable importance
	Wrap-up

