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Summary

Portfolio choice v2.0
▶ Classical portfolio theory (mean-variance) is polluted by estimation errors
▶ It can be shown that Minimum Variance weights are closely linked to

cross-sectional regressions
▶ In order to reduce estimation risk,1 it can be useful to resort to penalised regressions

instead
▶ The latter can also be used solely for prediction purposes

1Or fine-tune the bias-variance tradeoff.
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Agenda

1 Regular regressions

2 Penalized regressions

3 Bias-variance tradeoff

4 Portfolio considerations

5 Implementation details
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For starters: illustrative example (1/4)
Let’s say we are given the current data (plotted below)
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We wish to model the dependence between profitability and size...
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For starters: illustrative example (2/4)
There are tons of ways to find fitting functions:
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Maybe simplicity and parsimony are preferable...
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For starters: illustrative example (3/4)
The simplest form is the linear function: prof = a + b ∗ mkt cap.
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But these errors are huge! You can’t choose the line at random!
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For starters: illustrative example (4/4)
If we minimize the sum of squared errors:
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Much better! It’s the “best” possible line.
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Reminder (1/4)

What’s a (linear) regression?

You have a dependent variable Y and N exogenous variables X (n) that are used to
‘explain’ (or forecast) Y . The model is linear , i.e.:

Yt = β(1)X (1)
t + · · ·+ β(N)X (N)

t + ϵt ,

where t is the index of the observation. If there are T observations, the β(n) are usually
estimated (optimised, in fact) by minimising the quadratic error (sum of squared
residuals):

argmin
β

T∑
t=1

[
Yt −

(
β(1)X (1)

t + · · ·+ β(N)X (N)
t

)]2
.

In compact mode, the model is Y = Xβ + ϵ and the solution to the above problem is
β̂ = (X ′X )−1X ′Y . In terms of dimensions, X is (T × N), β is (N × 1) so that both Y and ϵ
are T -dimensional (column) vectors.
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Reminder (2/4)

Proof of the OLS expression

The sum of squared errors is

ϵ′ϵ = (y − Xβ)′(y − Xβ)

= y ′y − 2β′X ′y + β′X ′Xβ

so the gradient (multivariate derivative) is

∂

∂β
ϵ′ϵ = −2X ′y + 2X ′Xβ

and it’s equal to 0 if and only if β = (X ′X )−1X ′y .

Minimization would also require to check the second order condition → 2X ′X as Hessian
matrix.
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Reminder (3/4)

Inference vs forecasting

The model is y = Xβ + e.
▶ in inference, the aim is to quantify the absolute and relative importance of the

variables (columns of X ) in the way they explain y . This is done by making
assumptions on the errors e, e.g. they follow a Gaussian law and

E[e|X ] = 0.

▶ in forecasting, the goal is simply to build the best possible model (i.e., that works out
of sample). Errors are only interesting if they can be used to improve the accuracy of
the model.
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Reminder (4/4)

Where problems arise

The usual solution β̂ = (X ′X )−1X ′Y ...
▶ Obviously, the right part X ′Y is not going to be a problem
▶ The left part (X ′X )−1 on the other hand...
▶ Whenever the number of features (expl. variables) N is larger than the number of

observations (T), the matrix X ′X is singular (colinearity implies the matrix is not full
rank).

▶ This happens when working with returns when the
number of dates is smaller than the number of assets. This explains why daily
returns are often required to compute covariance matrices (more on that later).

By the way, a great reference on regression analysis is Econometric Analysis by
Greene (see Chap. 2→5).
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The partitioned form

Another look when a constant is included
The compact form Y = α1T + Xβ + ϵ is solved using the following trick. We define
Ỹ = Y − Ȳ1T and X̃ = X − 1

T 1T 1′
T X , which are the original values, where each column

has seen its mean retrieved (i.e., all columns have zero-mean). Then,

β̂ =
(

X̃ ′X̃
)−1

X̃ ′Ỹ ,

α̂ =
1
T

1′
T (Y − X β̂)

where the first term in β̂ is the inverse of the covariance matrix of X and the second
term is the vector of covariances between X and Y .

It is a corollary from the Frisch-Waugh-Lovell theorem (Chap. 3 in Greene).
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Bias & Variance

Useful for later..
Assuming a linear generation of data: Y = Xβ + ϵ (where β is unknown), the estimator
satisfies

β̂ = (X ′X )−1X ′Y = (X ′X )−1X ′(Xβ + ϵ) = β + (X ′X )−1X ′ϵ

Under the usual restriction E[ϵ|X ] = 0, we have E[β̂] = β. Also,

V[β̂|X ] = E[(β̂ − β)′(β̂ − β)|X ]

= E[(X ′X )−1X ′ϵϵ′X (X ′X )−1|X ]

= σ2(X ′X )−1,

as long as E[ϵϵ′] = σ2IT .
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A key point
About the ’usual’ restriction E[ϵ|X ] = 0:
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The error terms must have zero mean at any location of X .
If not, errors may be correlated with X !
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Agenda

1 Regular regressions

2 Penalized regressions

3 Bias-variance tradeoff

4 Portfolio considerations

5 Implementation details
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Definition(1/2)

Several families of penalised regressions

▶ LASSO (with δ > 0):

min
β

(Y − Xβ)′(Y − Xβ), s.t. ||β ||1 ≤ δ

▶ Ridge (with δ > 0):

min
β

(Y − Xβ)′(Y − Xβ), s.t. ||β ||22 ≤ δ

▶ Elastic-net (with δ > 0 and α ∈ (0,1)): linear convex combination of both norms

min
β

(Y − Xβ)′(Y − Xβ), s.t. α||β ||1 + (1 − α)||β||22 ≤ δ

We recall the norm notation: ||β||p =
(∑N

n=1 |βn|p
)1/p

.
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Definition (2/2)

Lagrange form (preferred)

▶ LASSO (with λ > 0):
min
β

(Y − Xβ)′(Y − Xβ) + λ||β ||1

▶ Ridge (with λ > 0):
min
β

(Y − Xβ)′(Y − Xβ) + λ||β ||22

▶ Elastic-net (with λ > 0, α ∈ [0,1]):

min
β

(Y − Xβ)′(Y − Xβ) + λα||β ||1 + λ(1 − α)||β||22

We recall the norm notation: ||β||p =
(∑N

n=1 |βn|p
)1/p

.
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Ridge: the closed form solution

The only nice form

L(β) = (Y − Xβ)′(Y − Xβ) + λβ′β

= Y ′Y + β′X ′Xβ − 2β′X ′Y + λβ′β

so that
∂L
∂β

= 2X ′Xβ − 2X ′Y + 2λβ

and
∂L
∂β

= 0 ⇔ β = (X ′X + λIN)−1X ′Y

where IN is the (N × N) identity matrix. The shape is pretty close to the original OLS form.
The only (BIG) difference is the λIN inside the matrix inversion. This term ensures that the
matrix in indeed invertible!

See Ledoit and Wolf (2004) for more details on the shrunk covariance matrix.
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Bias & Variance

Slight changes...
Assuming a linear generation of data: Y = Xβ + ϵ, the estimator satisfies

β̂ = (X ′X + λIN)−1X ′Y = (X ′X + λIN)−1X ′(Xβ + ϵ)

= (X ′X + λIN)−1(X ′X + λIN − λIN)β + (X ′X + λIN)−1X ′ϵ

Under the usual restriction E[ϵ|X ] = 0,

E[β̂]− β = −λ(X ′X + λIN)−1β.

The bias is not equal to zero. With regard to the variance, it can be shown to be equal to2

V[β̂] = σ2(X ′X + λIN)−1X ′X (X ′X + λIN)−1

and goes to zero as λ increases to infinity (β̂ converges to a constant).

2See Lecture notes on ridge regression by van Wieringen (2018)
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Example (0/3)

A simple goal

We aim to explain the return of the Apple Inc stock with the help of other characteristics:

rt = α+ βCapCapt + · · ·+ βP2BP2Bt + ϵt ,

where the factors (characteristics) have been normalised (because, e.g., Market Cap is
out of range).
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Example (1/3)
The Lasso first:
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The coefficients converge to zero pretty quickly!
→ the Lasso can serve as feature selection tool!
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Example (2/3)
The Ridge next:
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The coefficients converge to zero very slowly!
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Example (3/3)
The elasticnet at last:
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The convergence speed/behaviour is somewhere in the middle!
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Why the LASSO is selective
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2 Penalized regressions

3 Bias-variance tradeoff

4 Portfolio considerations

5 Implementation details
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Definition (1/2)

For any model

The aim is to find a model y = f (x) + ϵ with ϵ having zero mean, σ sd and E[ϵ|x ] = 0.
Assume a fitted model f̂ (regression, tree, SVM, NN, etc.). The quadratic error at point x
is:

E
[
(y − f̂ (x))2

]
= E

[(
f (x)− f̂ (x) + ϵ

)2
]

= E
[(

f (x)− f̂ (x)
)2

]
+ σ2

=
(
E
[
f (x)− f̂ (x)

])2

︸ ︷︷ ︸
Bias2

+E
[
f̂ (x)2

]
− E

[
f̂ (x)

]2

︸ ︷︷ ︸
Variance

+σ2

In the above expression, the sample x is random.
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Definition (2/2)

In the above expression:

▶ the bias assesses the average distance between the true f and the fitted one f̂ ,
▶ the variance measures the dispersion of f̂ over all possible x ,
▶ σ is the irreducible error: it is the level of approximation reached by the true f .

A very complex model is going to reduce bias but by doing so, it will move a lot to capture
a maximum of points. To the other end of the spectrum, a constant model f̂ (x) = c has
zero variance, but a rather large bias.
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References

The interested reader should have a look at:
▶ On the Inverse of the Covariance Matrix in Portfolio Analysis (Stevens, JF 1998)
▶ Improving Mean Variance Optimization through Sparse Hedging Restrictions

(Goto and Xu JFQA 2015)

See also:
The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights
(Britten-Jones, JF 1999)
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Mean-variance portfolios

The textbook derivation (no budget constraint: simplicity)

Minimise variance for a fixed return... and hope for the best!

min
w

w ′Σw , s.t. w ′µ = r∗

with µ and Σ first and second moment of expected (excess) returns.

L(w) = w ′Σw − λ(w ′µ− r∗)

Hence
∂L
∂w

= 2Σw − λµ = 0 ⇔ w =
λ

2
Σ−1µ,

where the λ scaling factor relates to risk preferences.

In practice, µ and Σ are estimated. Usually, µ is the one that is hardest to evaluate (and
has the most importance!).
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MV portfolios as regression estimates!

A surprising identiy

Britten-Jones (1999) remarked that you can interpret:

w = Σ−1︸︷︷︸
(X ′X )−1

× µ︸︷︷︸
X ′1

Thus, if X is a matrix of returns, w is the OLS estimate of:

1 = Xw + e

Amazing!
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Minimum variance portfolios

The textbook derivation (with budget constraint here)

Minimise variance and that’s all!

min
w

w ′Σw , s.t. w ′1N = 1,

where the last constraint is simply the budget constraint. Then,

L(w) = w ′Σw − λ(w ′1N − 1)

Hence
∂L
∂w

= 2Σw − λ1N = 0 ⇔ w =
λ

2
Σ−11N ,

where the λ is determined by the budget:

w =
Σ−11N

1′
NΣ

−11N
.

IN ANY CASE, Σ−1 IS REQUIRED!
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A deep interpretation (1/3)

A closer look at the inverse
If we decompose the matrix Σ into:

Σ =

[
σ2 c′

c C

]
,

classical partitioning results (e.g., via Schur complements) imply

Σ−1 =

[
(σ2 − c′C−1c)−1 −(σ2 − c′C−1c)−1c′C−1

−(σ2 − c′C−1c)−1C−1c C−1 + (σ2 − c′C−1c)−1C−1cc′C−1

]
.

We are interested in the first line, which has 2 components: the factor (σ2 − c′C−1c)−1

and the line vector c′C−1. C is the covariance matrix of assets 2 to N and c is the
covariance between the first asset and all other assets. The first line of Σ−1 is

(σ2 − c′C−1c)−1

1 −c′C−1︸ ︷︷ ︸
N−1 terms

 .
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A deep interpretation (2/3)

A special regression

We regress the returns of the first asset against those of all other assets:

r1,t = a1 +
N∑

n=2

β1|nrn,t + ϵt , i.e., r1 = a11T + R−1β1 + ϵ

The OLS estimator for β1 is β̂1 = C−1c

and in addition (exercise!):

(1 − R2)σ2
r1
= σ2

r1
− c′C−1c = σ2

ϵ,1, R2 is the R-squared of the regression

(where in fact the sum of sq residuals σ2
r1
= σ2) and the first line of Σ−1 is equal to

1
σ2
ϵ,1

×
[
1 − β̂′

1

]
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A deep interpretation (3/3)

Remember Minimum Variance?
Each line of the inverse covariance matrix is multiplied by 1N , and one line has form:

[1 -b' ]1
(1-R2)

long position in stock 1

hedging positions in all other stocks

2

The red scaling factor is the inverse of ϵ̂′ϵ̂: when errors are large, positions are smaller.
Note: β was chosen to minimise the error/variance pertaining to the above portfolio,
which is a clear reference to ‘minimum variance’.

This applies to all other lines/stocks!
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Bottom line

Reduce estimation risk
▶ When T is not much larger than N, the covariance matrix is noisy, and its inverse

even more. It is possible to regularise the estimation of these matrices upfront (see
the work of Ledoit and Wolf).

▶ Nonetheless, the regularisation can occur at the stock level, using hedging
relationships.

▶ The generalisation is straightforward: bias vs tradeoff AND transaction costs imply
that penalised regression could be a good idea.
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The strategies (1/2)
Sparse portfolios.

Pseudo-algorithm

For all dates t ,
▶ For all stocks i ,

1. estimate the elastic-net regression over the t = 1, . . . ,T samples

argmin
βi|


T∑

t=1

ri,t − ai −
N∑

n ̸=i

βi|nrn,t

2

+ λα||βi|||1 + λ(1 − α)||βi|||22


2. to get the weights of asset i : wi =

1−
∑

j ̸=i βi|j
σ2
ϵ,i

Note, when the number of asset is large, this may take too much time and the
regularisation can be performed directly on the inverse covariance matrix (for Lasso and
Ridge at least): precision matrix estimation via the GLASSO for instance.
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The strategies (2/2)

Predictive LASSO

Pseudo-algorithm

For all dates t ,
▶ For all stocks i ,

1. estimate a predictive model

rn,t = α+
K∑

k=1

βk
n f k

t−1 + ϵn,t , s.t . α||βn ||1 + (1 − α)||βn||22 ≤ δ

2. form a prediction with current factor/feature values f k
t

3. devise an allocation scheme based on this prediction

There is a large palette of potential predictors f k
t (e.g., ‘true’ asset pricing factors), but we

will simply work with (rescaled) firm attributes.
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Thank you for your attention

Any questions?
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Proof for R2

With X being the concatenation of 1T with returns R−1 and with y = r1,
R2 = 1 − ϵ′ϵ

Tσ2
Y
= 1 − y′y−β̂′X ′X β̂

Tσ2
Y

= 1 − y′y−y′X β̂

Tσ2
Y

, with fitted values X β̂ = â11T + R−1C−1c. Hence,

Tσ2
r1 R2 = Tσ2

r1 − r ′
1r1 + â11′

T r1 + r ′
1R−1C−1c

T (1 − R2)σ2
r1 = r ′

1r1 − â11′
T r1 −

(
r̃1 +

1T 1′
T

T
r1

)′ (
R̃−1 +

1T 1′
T

T
R−1

)
C−1c

T (1 − R2)σ2
r1 = r ′

1r1 − â11′
T r1 − T c′C−1c − r ′

1
1T 1′

T

T
R−1C−1c

T (1 − R2)σ2
r1 = r ′

1r1 −
(1′

T r1)
2

T
− T c′C−1c

(1 − R2)σ2
r1 = σ2

r1 − c′C−1c

where in the fourth equality we have plugged â1 =
1′T
T (r1 − R−1C−1c).

(there is probably a simpler proof - see e.g. Section 3.5 in Greene)
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