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Returns

Two ways to proceed

Arithmetic returns Logarithmic returns

rt−∆t,t =
Pt

Pt−∆t
− 1 rt−∆t,t = log

(
Pt

Pt−∆t

)
Pt = P0

∏t
s=1 (1 + rs−1,s) Pt = P0 exp

(∑t
s=1 rs−1,s

)
Good for cross-section aggregation Good for time aggregation

Often used in discrete time Often used in continuous time

ex: portfolio allocation ex: option pricing

When ∆t is sufficiently small so that returns are small too, both definitions are close
because log(1 + x) = x + o(x).
Example of difference: aggregating AR in time: (1 + r)(1 − r) ̸= 1!
Note: despite their practical importance, we do not include dividends in this lecture.

3 / 27



©GuillaumeCoqueret

supervised
learning
factor
investing

CS aggregation with arithm. returns

A simple proof

Consider 2 assets, A and B and a portfolio consisting of nA and nB units of each. The
corresponding weights at time t are wA =

nAPA
t

nAPA
t +nBPB

t
and wB =

nBPB
t

nAPA
t +nBPB

t
.

The total wealth is equal to Wt = nAPA
t + nBPB

t .
Its return is

Wt+1

Wt
− 1 =

nAPA
t+1 + nBPB

t+1

nAPA
t + nBPB

t
− 1

= wA PA
t+1

PA
t

+ wB PB
t+1

PB
t

− 1

= wA PA
t+1

PA
t

+ wB PB
t+1

PB
t

− wA − wB

= wArA
t,t+1 + wBrB

t,t+1
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TS aggregation with log-returns

A simple proof

Take any three dates s < t < u,

rs,u = log

(
Pu

Ps

)
= log

(
Pu

Pt

Pt

Ps

)
= log

(
Pu

Pt

)
+ log

(
Pt

Ps

)
= rs,t + rt,u

This is why, in continuous time, prices are often exponentials of processes with
independent increments (e.g., Brownian motion, Lévy processes)
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TS aggregation: link with CLT

Squeezing the tails

If log-returns are iid, then for a uniform sequence 0 = t1 < t2 < · · · < tn = t , rt =
∑n

i=1 rti
and

rt − nr̄
σr
√

n
→ N(0,1),

so that when n is large,

rt
d
≈ σr

√
n × N(0,1) + nr̄ ,

i.e., Gaussian models become good approximations.

This is why long term returns (e.g., annual returns) are close to normally distributed.
NOTE: the CLT holds under quite general assumptions! (iid not necessarily required!).
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Returns in theory

Very often, iid Gaussian

IN THEORY, non-overlapping returns are often assumed independent and their
distribution depends only on ∆t , µ, σ.

rt−∆t,t
d
= N

(
µ∆t , σ2∆t

)
,

which (e.g.) matches the Black-Scholes model when µ = r − σ2

2 .

→ very tractable in computations!

→ can be extended to Lévy processes to account for extreme events.

BUT!
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Stylized Facts

Returns in practice! See Cont 20011

Empirically, the following properties have been identified

▶ distribution: returns are heavy-tailed when ∆t is small but converge to Gaussian
laws when the horizon increases

▶ lack of auto-correlation: at daily frequencies (and above), returns are only mildly
serially correlated

▶ stochastic volatility: returns exhibit clusters during which their dispersion increases
▶ persisting absolute returns: relatedly, the autocorrelogram of absolute returns is

slowly decaying

→ complex stochastic processes reflect these empirical properties (e.g., combining
stochastic volatility to jump processes).

1Empirical properties of asset returns: stylized facts and statistical issues - Quant. Finance
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S&P 500 returns (1/3)
Distribution of daily returns Jan 1993 - May 2022 (SPY ETF):
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The red curve is the fitted Gaussian density.
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S&P 500 returns (2/3) - Tails!
The devil is in the ‘de-tails’.
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The tails of empirical returns are much heavier than those of the corresponding Gaussian
distribution. Extreme events are not that rare!
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S&P 500 returns (3/3) - Volatility
Standard deviation over 21 daily returns (∼ monthly).
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→ Empirically, returns do not seem stationary over the long term.
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Protocol

User specified rules

▶ Investment universe (asset class, geography, sector)
▶ Portfolio strategy/strategies:

▶ strategy type: agnostic, price-based (ex: chartist), characteristics-based, macro, etc.
▶ implementation constraints: leverage, liquidity, factor/region/industry exposure, etc.
▶ possibly, a benchmark for comparison purposes (EW-CW)

▶ Backtesting period (usually driven by data and investment universe) & rebalancing
frequency (usually driven by policy and transaction costs)

▶ Performance metrics (covered below)
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In-sample vs Out-of-sample
In sample (IS):

Out-of-sample (OOS):

time
| | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | |

take all points to estimate returns, covariance, etc.

for each t:
1. gather data from the past

(rolling or expanding)

t+1

2. then compute estimators
and optimal weights

3. finally, store the realized
returns from the period ahead

Big difference
between the two! Nobody uses IS anymore...
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In practice (1/4)

Pseudo code form
initialize portfolio weights
initialize portfolio return

for t in (rebalancing dates){
1. filter data appropriately (retain PAST data)
2. determine portfolio weights
3. compute FUTURE portfolio returns (with present values)

}

Then, given portfolio weights and portfolio returns,
compute performance metrics

It’s as simple as that. To keep things clear: compartmentalise!
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In practice (2/4)

Four crucial steps

We must:
1. prepare data (session 4)
2. build ML engine (sessions 3, 5, 6, 7, 8)
3. convert signal (ML output) into investment decision
4. be attentive to perf metrics for both signal (ML) and portfolios (session

7)

The meta-framing task is even more important: does what you do make sense
economically and technically/statistically?
It does require a bit of expertise (knowledge + experience) to figure this out.
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In practice (3/4)

This stage is incredibly important.

A word on signal processing

Usually, the ML engine will yield forecasts/signals: future returns, profitability probability,
confidence score, etc. This must be translated into portfolio weights. Several choices
are possible:

1. immediate optimisation (Markowitz-like, the output can, e.g., serve as expected
return vector)

2. heuristic two-stage construction:
▶ start by choosing the assets to invest in (those with positive score, those with score above

a threshold (median), etc.)
▶ then weight: EW, CW, Inverse vol, Min variance, etc.

+ constraints (see next slide)
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In practice (4/4)

Classical constraints
▶ (hard): b− < wi < b+;
▶ turnover, liquidity: (wt − wt−1)

′Λ(wt − wt−1) < δ with Λ diag;
▶ diversification, w ′

t wt < κ (Herfindhal index);
▶ factor exposure (proxy), v−

k < [Fwt ]k < v+
k → works for industry and geographical

exposures as well;
▶ etc.
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Notations

Weights and returns

▶ asset (stock) returns: rn
t , t for time, n for asset index

▶ portfolio weights: wn
t , proportion invested at time t in asset n

▶ portfolio returns: rP
t =

∑N
n=1 wn

t−1rn
t (to state the obvious): cross-sectional

aggregation!
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Raw performance

Realised returns
We start from the uniform time grid: t = 1, . . . ,T with 1 being the first date of the backtest
and T the last one.
We assume that ν periods make one year (e.g. ν = 12 for monthly rebalancing and ν = 4
for quarterly rebalancing)
The full portfolio trajectory is given by Pt =

∏t
s=1(1 + rP

t ). Initial value equals one
(usually).
▶ Annualized arithmetic returns: r̄P = ν

T

∑T
t=1 rP

t

▶ Annualized geometric returns:
(∏T

s=1(1 + rP
s )

)ν/T
− 1
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Risk measures & relative perf.

A large palette of metrics

▶ Annualised volatility: σP =
√

ν
T

∑T
t=1(r

P
t − r̄P/ν)2

▶ VaR at q (often, q = 0.05): q quantile of rP
t : P[rP

t ≤ VaRP
q ] = q

▶ Maximum Drawdown: maximum decline from a historical peak:

MDDP = max
t∈[0,T ]

((
max
τ∈[0,t]

Pτ

)
− Pt

)
▶ See also: downwards vol, expected shortfall (CVaR).

Risk adjusted performance:
▶ Sharpe ratio: SRP = r̄P/σP (originally in excess of riskfree rate version)
▶ MAR ratio: MARP = r̄P/MDDP (originally used with geometric returns)

Relative performance: Information ratio: IR=(r̄P − r̄B)/TE(P,B), where P=portfolio, B=benchmark
and TE is the tracking error: TE(P,B) =

√
V[rP − rB].
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Turnover
Asset rotation is costly
Turnover assesses the changes in the portfolio when rebalancing takes place. A simple proxy is the
following:

Turnover ≈ 1
T − 1

T∑
t=2

N∑
n=1

|wn
t − wn

t−1|,

as it requires the portfolio weights only. The true turnover is

Turnover =
1

T − 1

T∑
t=2

N∑
n=1

|wn
t − wn

t−|,

where t− denotes the time just before rebalancing: the trajectory of the weight must be computed
using the asset returns.

Cap-weighted strategies have very low turnover.

TC-adjusted performance: SRTC = r̄−δTurnover
σ

, where δ (30-50 bps) is a TC constant. NOTE: TC
could also be evaluated at the asset level: liquid assets have lower TC (that’s preferable, but that’s
harder to do).
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Turnover and drifting weights

Illustration:

time t:

50% in stock A
say 10$

50% in stock B
say 10$

time t+1:

stock A increased by 10%
its weight is 55% (11/20)

stock B decreased by 10%
its weight is 45% (9/20)

Let's consider a 1/N strategy with 2 assets:

upon rebanlancing

we need to reduce
the weight of stock A

and increase that of
stock B
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Portfolios in practice

It’s all about returns
▶ empirically: heavy-tailed, volatility clusters, etc. (properties are time-varying,

processes are only ‘locally’ stationary).
▶ backtesting requires many choices, i.e., many degrees of freedom, though some are

dictated by data or policy contingencies.
▶ Each step counts and being careful at each stage can make a difference.

26 / 27



©GuillaumeCoqueret

supervised
learning
factor
investing

Thank you for your attention

Any questions?
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