This is the companion notebook to the introductory course on simple portfolio construction and performance metrics. It contains simple examples of portfolio backtesting. The structures of this section will be used later on in the course.
\(\rightarrow\) ABOUT THE NOTEBOOK:
The S&P500 is one of the most widely scrutinised index in the US Equity investment space. It serves very often as benchmark. The purpose of this section is to unveil a few of its statistical properties and to use the highcharter package for highchart rendering in R.
We start by loading the packages and downloading the data. For technical reasons, we download the series of the ETF replicating the S&P500 (SPY ticker).
if(!require(highcharter)){install.packages("highcharter")} # Package for nice financial graphs
if(!require(scales)){install.packages("scales")} # Package for graph scales
library(tidyverse) # The data wrangling package
library(plotly) # For interactive graphs
library(lubridate) # For data management
library(quantmod) # The package that eases the downloading of financial data
library(highcharter) # The package for financial time-series plots
min_date <- "1980-01-01"
max_date <- "2025-09-30"
prices <- getSymbols("SPY", src = 'yahoo', # Yahoo source (ETF ticker) ^GSPC
from = min_date,
to = max_date,
auto.assign = TRUE,
warnings = FALSE) %>%
map(~Ad(get(.))) %>%
reduce(merge) %>%
`colnames<-`("SPY")
Then, we turn to plotting, using highchart format.
We underline that this package works with special xts
(R extensible time-series) format. We point to the package reference for
more details on this subject:
- https://jkunst.com/highcharter/
- https://www.highcharts.com/blog/tutorials/highcharts-for-r-users/
- https://cran.r-project.org/web/packages/highcharter/index.html
highchart(type = "stock") %>%
hc_title(text = "Evolution of the SPY") %>%
hc_add_series(prices) %>%
hc_tooltip(pointFormat = '{point.y:.3f}') # To round the y-axis numbers
A nice feature of highcharts is that they allow the user to change the observation period and see the values of points on the curve.
Next, we turn to the distribution of returns.
returns <- prices %>% # Formula for returns
data.frame(Date = index(.)) %>% # Adding the Date as a column
mutate(SPY = SPY / dplyr::lag(SPY) - 1) %>% # Returns
na.omit() # Removing NA rows
m <- mean(returns$SPY) # Average daily return
s <- sd(returns$SPY) # Volatility = sd of daily returns
returns %>% ggplot() + # Plot
geom_histogram(aes(x = SPY, y = ..density..), bins = 100, alpha = 0.6) + theme_light() +
stat_function(fun = dnorm, args = list(mean = m, sd = s), aes(color = "Gaussian")) +
theme(legend.position = c(0.7, 0.7))
#ggsave("Hist_SPX.pdf", width = 8, height = 5)
We plot the Gaussian density with parameters corresponding to the sample mean and standard deviation. Small grey rectangles around \(\pm 0.05\) indicate that large positive and negative returns occur more often than estimate by the Gaussian law: the tails of their distribution are notoriously heavy.
dens2 <- function(x) dnorm(x, mean = m, sd = s)/mean(returns<(-0.02) & returns>(-0.12), na.rm=T) # Need to rescale
returns %>% ggplot() + # Plot
geom_histogram(aes(x = SPY, y = ..density..), bins = 100, alpha = 0.6) + theme_light() +
stat_function(fun = dens2, aes(color = "Gaussian")) +
theme(legend.position = c(0.4, 0.4)) +
xlim(-0.12,-0.02)
#ggsave("Tail_SPX.pdf", width = 8, height = 5)
The Gaussian density is above the histogram for returns above -3%, but then strongly below and predicts that events such as -5% on a given day should virtually never happen.
Finally, we take a dynamic look at the volatility. We take a frugal approach; much more elegant methods are presented in Section 4.5 of Reproducible Finance by Jonathan Regenstein, as well as the roll_sd() function used in http://www.reproduciblefinance.com/drafts/post/vix-and-realized-volatility-updating-our-previous-work/
nb_days <- 21 # 63 days roughly equivalent to 3 months
vol <- 0 # Initialisation
for(i in 1:(nrow(returns) - nb_days + 1)){ # Loop on dates: not elegant!
vol[i] <- sd(returns$SPY[i:(i + nb_days - 1)]) # Forward vol computed on rolling window of nb_days
}
Date <- returns$Date[nb_days:nrow(returns)] # Vector of dates
vol <- data.frame(vol*sqrt(252)) # Vector inside a dataframe
rownames(vol) <- Date # Change the index of the dataframe
highchart(type = "stock") %>% # Code for the plot
hc_title(text = "Evolution of realized volatility") %>%
hc_add_series(as.xts(vol)) %>%
hc_tooltip(pointFormat = '{point.y:.2f}') # To round the y-axis numbers
Clearly the graph shows periods of low volatility and clusters of high market turbulence (crashes, most of the time). Returns are therefore not stationary. The properties we exhibited for the S&P500 are also true at the individual stock level.
In the next sections, we turn to the core topic of portfolio backtesting.
Portfolio backtesting usually involves several assets. Hence we rely
on an external dataset henceforth.
First, let’s start with the preprocessing of the data.
We first import and arrange the data. The data consists of monhtly financial information pertaining to 30 large US firms. They are characterised by their ticker symbol:
A - F | G - M | O - Z |
---|---|---|
AAPL (Apple) | GE (General Electric) | ORCL (Oracle) |
BA (Boeing) | HD (Home Depot) | PFE (Pfizer) |
BAC (Bank of America) | IBM | PG (Procter & Gamble) |
C (Citigroup) | INTC (Intel) | T (AT&T) |
CSCO (Cisco) | JNJ (Johnson & Johnson) | UNH (United Health) |
CVS (CVS Health) | JPM (JP Morgan) | UPS |
CVX (Chevron) | K (Kellogg) | VZ (Verizon) |
D (Dominion Energy) | MCK (McKesson) | WFC (Wells Fargo) |
DIS (Disney) | MRK (Merck) | WMT (Walmart) |
F (Ford) | MSFT (Microsoft) | XOM (Exxon) |
There are 7 attributes: closing price (Close),
market capitalisation in M$ (Mkt_Cap), price-to-book
ratio (P2B), 1 month volatility
(Vol_1M), debt-to-equity ratio (D2E)
and profitability margin (Prof_Marg).
Finally, the time range is 2000-2021.
load("data_new.RData") # Loading the data: IF DIRECTORY OK!
data <- data %>% arrange(date,symbol) # Ranked first according to date and then stocks
summary(data) # Descriptive statistics
## date symbol close vol_1y
## Min. :2000-11-30 Length:8760 Min. : 0.2525 Min. :0.05741
## 1st Qu.:2006-12-23 Class :character 1st Qu.: 29.3026 1st Qu.:0.15982
## Median :2013-01-15 Mode :character Median : 49.4400 Median :0.21048
## Mean :2013-01-14 Mean : 75.0564 Mean :0.24509
## 3rd Qu.:2019-02-07 3rd Qu.: 87.4050 3rd Qu.:0.29136
## Max. :2025-02-28 Max. :960.0200 Max. :1.59204
##
## mkt_cap p2b d2e revenue
## Min. :5.024e+09 Min. : 0.2767 Min. : 0.00 Min. :4.827e+09
## 1st Qu.:6.452e+10 1st Qu.: 1.8193 1st Qu.: 35.59 1st Qu.:3.749e+10
## Median :1.374e+11 Median : 2.9471 Median : 70.67 Median :6.671e+10
## Mean :1.855e+11 Mean : 11.5858 Mean : 248.47 Mean :1.018e+11
## 3rd Qu.:2.123e+11 3rd Qu.: 5.5292 3rd Qu.: 199.18 3rd Qu.:1.284e+11
## Max. :3.463e+12 Max. :540.0111 Max. :5814.97 Max. :6.810e+11
## NA's :121 NA's :56 NA's :1168
## scope_1
## Min. : 9489
## 1st Qu.: 95316
## Median : 567297
## Mean : 9503221
## 3rd Qu.: 1500000
## Max. :145500000
## NA's :2003
symbols <- unique(data$symbol) # Set of assets
t_all <- unique(data$date) # Set of dates
N <- n_distinct(data$symbol) # Number of stocks
This simple table shows a possible outlier for the P2B variable. The maximum value is clearly out of range.
Next, we format the data for future use. Notably, we compute & store returns.
data <- data %>%
group_by(symbol) %>% # Grouping: returns computed stock-by-stock
mutate(return = close / dplyr::lag(close) - 1) %>% # Adding returns
ungroup()
returns <- data %>% # Take data
select(symbol, date, return) %>% # Select 3 columns
pivot_wider(names_from = symbol, values_from = return) |> # Put them into 'matrix' format
na.omit()
returns # Show the returns
## # A tibble: 291 × 31
## date AAPL BA BAC C CSCO CVS CVX D
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2000-12-31 -0.0985 -0.0443 0.149 0.0251 -0.201 0.0538 0.0313 0.117
## 2 2001-01-31 0.454 -0.114 0.173 0.0961 -0.0212 -0.0123 -0.0137 -0.0776
## 3 2001-02-28 -0.156 0.0632 -0.0719 -0.121 -0.367 0.0304 0.0286 0.0608
## 4 2001-03-31 0.209 -0.104 0.0961 -0.0854 -0.332 -0.0411 0.0250 -0.0166
## 5 2001-04-30 0.155 0.109 0.0228 0.0927 0.0738 0.00786 0.0998 0.0624
## 6 2001-05-31 -0.217 0.0176 0.0580 0.0427 0.134 -0.0687 -0.00528 -0.0320
## 7 2001-06-30 0.165 -0.116 0.0132 0.0310 -0.0550 -0.297 -0.0578 -0.0931
## 8 2001-07-31 -0.192 0.0527 0.0598 -0.0498 0.0560 -0.0671 0.00983 0.00599
## 9 2001-08-31 -0.0128 -0.125 -0.0333 -0.0888 -0.150 0.00278 -0.00700 0.0407
## 10 2001-09-30 -0.164 -0.346 -0.0504 -0.115 -0.254 -0.0806 -0.0661 -0.0572
## # ℹ 281 more rows
## # ℹ 22 more variables: DIS <dbl>, F <dbl>, FDX <dbl>, GE <dbl>, HD <dbl>,
## # IBM <dbl>, INTC <dbl>, JNJ <dbl>, JPM <dbl>, K <dbl>, LLY <dbl>, MCK <dbl>,
## # MRK <dbl>, MSFT <dbl>, ORCL <dbl>, PFE <dbl>, PG <dbl>, T <dbl>, VZ <dbl>,
## # WFC <dbl>, WMT <dbl>, XOM <dbl>
Often, students think in terms of simple signals, e.g., based on
crossings of moving averages (to detect trend changes):
- simple asset: this is complex because binary signals
impose to buy/sell possibly frequently, which is costly
- multiple assets: even with several assets, binary
signals are costly because positions are not very nuanced
Solution: real-valued signals. But adding a layer of optimization is preferable (include constraints!).
Now, let’s consider the usual Markowitz allocation subject to the budget constraint \(\textbf{w}'\textbf{1}=1\):
\[\text{max} \ \textbf{w}'\boldsymbol{\mu} - \frac{\gamma}{2}\textbf{w}'\boldsymbol{\Sigma}\textbf{w}, \quad \text{s.t.} \quad \textbf{w}'\textbf{1}=1 \] with Lagrangian: \[L(\textbf{w})=\textbf{w}'\boldsymbol{\mu} - \frac{\gamma}{2}\textbf{w}'\boldsymbol{\Sigma}\textbf{w}+\delta (\textbf{w}'\textbf{1}-1)\] so that \[\frac{\partial L}{\partial \textbf{w}}=\boldsymbol{\mu}-\gamma\boldsymbol{\Sigma}\textbf{w}+\delta\textbf{1}=0 \quad \Rightarrow \quad \textbf{w}=\gamma^{-1}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}+\delta \textbf{1}),\] where \(\delta\) is chosen to satisfy the budget constraint. A particular case is the minimum variance portfolio which corresponds to \(\boldsymbol{\mu}=\textbf{1}\): the optimal portfolio is proportional to \(\boldsymbol{\Sigma}^{-1} \textbf{1}\).
Sigma <- returns %>% # Covariance matrix
select(-date) %>%
cov(use = "complete.obs")
Sigma[1:9,1:9] %>% round(3) # A quick look at Sigma
## AAPL BA BAC C CSCO CVS CVX D DIS
## AAPL 0.010 0.002 0.003 0.003 0.003 0.001 0.002 0.001 0.003
## BA 0.002 0.009 0.004 0.005 0.003 0.002 0.002 0.001 0.003
## BAC 0.003 0.004 0.012 0.010 0.003 0.002 0.003 0.001 0.004
## C 0.003 0.005 0.010 0.014 0.004 0.003 0.003 0.001 0.005
## CSCO 0.003 0.003 0.003 0.004 0.008 0.002 0.002 0.001 0.003
## CVS 0.001 0.002 0.002 0.003 0.002 0.006 0.002 0.001 0.002
## CVX 0.002 0.002 0.003 0.003 0.002 0.002 0.004 0.001 0.002
## D 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001
## DIS 0.003 0.003 0.004 0.005 0.003 0.002 0.002 0.001 0.006
Min_var_weights <- solve(Sigma) %*% rep(1,N) # Proportional weights
Min_var_weights <- Min_var_weights / sum(Min_var_weights) # Exact (scaled) weights
data.frame(symbols, Min_var_weights) %>%
ggplot(aes(x = Min_var_weights, y = symbols)) + # Plot
geom_col(alpha = 0.5) + theme_light()
Naturally, the stocks with super low volatility (Disney, Walmart) are favored! Let’s see when the weights are driven by the mean returns… Mind the vector multiplication operator %*%.
mu <- returns %>% # Mean vector
select(-date) %>% # Remove date
colMeans()
Marko_weights <- solve(Sigma) %*% mu # Proportional weights
Marko_weights <- Marko_weights / sum(Marko_weights) # Exact (scaled) weights
bind_cols(symbols, Marko_weights) %>%
ggplot(aes(x = Marko_weights, y = symbols)) + # Plot
geom_col(alpha = 0.5) + theme_light()
(Marko_weights[,1] %*% mu)/sqrt(t(Marko_weights) %*% Sigma %*% Marko_weights) # In-sample SR!
## [,1]
## [1,] 0.4854783
AAPL and UNH have high returns => high weights.
Now let’s look at 2 ways of processing these weights into portfolio values.
w_matrix <- matrix(Marko_weights,
ncol = N, nrow = length(t_all) - 1, byrow = T) # Weight matrix
(rowSums((returns %>% select(-date)) * w_matrix) + 1) %>% # Simple product = element-wise
cumprod() %>% round(3) # Cumulative product + rounding
## [1] 1.090 1.209 1.162 1.266 1.366 1.376 1.393 1.424
## [9] 1.403 1.346 1.317 1.418 1.475 1.568 1.579 1.719
## [17] 1.776 1.695 1.660 1.522 1.638 1.617 1.531 1.446
## [25] 1.492 1.497 1.428 1.445 1.460 1.603 1.714 1.682
## [33] 1.765 1.671 1.754 1.632 1.718 1.663 1.799 1.921
## [41] 1.978 2.083 2.256 2.257 2.418 2.641 2.941 3.328
## [49] 3.388 3.749 3.929 3.718 3.545 3.644 3.727 4.095
## [57] 4.391 4.628 4.976 5.417 5.689 5.932 5.747 5.780
## [65] 5.904 5.656 5.635 5.802 5.838 6.389 6.607 6.799
## [73] 6.591 6.897 6.888 7.209 7.469 7.923 7.616 7.902
## [81] 8.116 8.639 9.751 10.377 10.724 10.789 10.239 11.756
## [89] 11.964 12.857 12.409 13.118 13.292 12.704 12.581 11.763
## [97] 12.559 13.319 13.432 12.335 12.927 13.599 14.673 15.477
## [105] 13.788 14.819 15.888 16.772 17.668 16.030 17.009 17.661
## [113] 18.340 17.837 17.836 17.479 16.001 17.576 17.919 17.255
## [121] 19.048 19.193 19.623 19.665 19.349 20.094 19.337 21.353
## [129] 22.194 20.777 20.756 20.475 21.507 22.355 24.899 26.283
## [137] 25.925 26.292 27.532 28.555 29.944 30.118 28.744 29.461
## [145] 27.494 27.431 27.813 27.677 27.263 28.260 26.167 28.907
## [153] 29.827 29.413 31.638 34.496 33.888 34.122 35.908 37.869
## [161] 38.318 40.405 40.445 39.530 41.891 42.918 45.489 46.956
## [169] 46.730 48.071 49.014 48.445 48.791 49.391 50.734 49.213
## [177] 44.995 44.733 44.249 45.986 45.790 44.970 42.694 45.478
## [185] 43.220 44.693 43.697 47.007 46.192 46.979 46.659 47.151
## [193] 49.308 53.619 58.771 60.225 60.380 63.139 64.990 68.021
## [201] 69.225 67.490 70.924 75.967 79.514 84.541 81.540 75.568
## [209] 75.378 78.561 79.689 86.996 96.871 98.335 97.062 96.827
## [217] 89.877 91.080 93.528 97.355 101.547 97.262 101.928 110.324
## [225] 119.288 120.611 119.027 125.815 125.391 134.445 128.801 126.954
## [233] 142.168 146.794 167.448 179.304 201.128 198.598 182.753 196.514
## [241] 199.309 226.986 220.354 216.024 239.029 237.609 259.219 284.890
## [249] 290.659 273.662 317.236 307.479 328.503 332.649 344.027 370.068
## [257] 383.618 352.209 353.748 395.330 407.911 405.275 463.101 484.198
## [265] 459.359 452.894 459.279 458.383 526.460 556.379 618.626 654.095
## [273] 694.044 664.224 693.502 722.200 693.480 736.293 810.436 776.098
## [281] 820.758 878.139 988.512 973.878 1132.218 1054.755 1088.193 1233.225
## [289] 1257.834 1215.720 1192.896
The above code is ugly. Because the data is neatly ordered, we can do better! Let’s add a new column to the data.
data %>%
select(symbol, date, return) %>% # Keep only necessary cols
bind_cols(w_Marko = rep(Marko_weights, length(t_all))) # Bind cols: beware to the order!
## # A tibble: 8,760 × 4
## symbol date return w_Marko
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2000-11-30 NA 0.374
## 2 BA 2000-11-30 NA 0.0876
## 3 BAC 2000-11-30 NA 0.0886
## 4 C 2000-11-30 NA -0.306
## 5 CSCO 2000-11-30 NA -0.0382
## 6 CVS 2000-11-30 NA 0.0195
## 7 CVX 2000-11-30 NA 0.136
## 8 D 2000-11-30 NA -0.0404
## 9 DIS 2000-11-30 NA 0.00359
## 10 F 2000-11-30 NA -0.0925
## # ℹ 8,750 more rows
Now we can add benchmark weights and proceed.
p <- data %>%
select(symbol, date, return) %>%
bind_cols(w_Marko = rep(Marko_weights, length(t_all))) %>%
mutate(w_benchmark = 1/30) %>% # Add benchmark weights 1/N
pivot_longer(cols = c(w_Marko, w_benchmark), # Pivot to tidy
names_to = "portfolio",
values_to = "weight") %>%
group_by(date, portfolio) %>% # Group to compute portf return
summarise(return = sum(weight * return)) %>% # Portf return, date-by-date
ungroup() %>% # Ungroup
na.omit() %>% # Remove outliers
group_by(portfolio) %>% # Group along the 2 portfolios
mutate(value = cumprod(1+return)) %>% # Compute portfolio values
ggplot(aes(x = date, y = value, color = portfolio)) + # Plot
geom_line() + theme_light() + scale_y_log10() +
scale_color_manual(values = c("#706C66", "#0A7BB0"), labels = c("Benchmark", "Markowitz")) +
theme(legend.position = c(0.3,0.7))
ggplotly(p, width = 900)
Given the log-scale: is this reasonably realistic? Obvious answer: NO! The weights have been chosen with knowledge of the trajectory!!! Also: portfolio managers update the weights…
What if we want to add constraints? Indeed, it’s
often not possible to short weights (ex: with Citi…).
We will use a super simple, yet super useful package:
quadprog!
quadprog solves the following programs:
\[\underset{\textbf{x}}{\min} \
-\textbf{d}'\textbf{x} +
\frac{1}{2}\textbf{x}'\textbf{D}\textbf{x}=\underset{\textbf{x}}{\max}
\ \textbf{d}'\textbf{x} -
\frac{1}{2}\textbf{x}'\textbf{D}\textbf{x}, \quad \text{subject to}
\ \textbf{A}'\textbf{x} \ge \textbf{b}_0,\] where in the
constraints the inequality is meant element-wise and the first \(m\) inequalities are in fact
equalities.
In our cases, it is clear that \(\textbf{d}\) is the vector of expected
returns and \(\textbf{D}\) is the
covariance matrix.
Moreover, we want to impose the budget constraint plus a non-negativity
constraint for all assets, thus:
\[\textbf{A}'=\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 0 &\dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots &0 \\ 0 & 0 & \dots & 1 \end{bmatrix}, \quad \textbf{b}_0=\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}\]
are the natural choices
if(!require(quadprog)){install.packages("quadprog")}
library(quadprog)
A <- rbind(rep(1, N),
diag(N))
b_zero <- c(1, rep(0, N))
Marko_LO <- solve.QP( # Long-only Markowitz
Dmat = Sigma,
dvec = mu,
Amat = t(A),
bvec = b_zero,
meq = 1 # only 1 equality = budget constraints.
)$solution
bind_cols(symbols, Marko_LO) %>%
ggplot(aes(x = Marko_LO, y = symbols)) + # Plot
geom_col(alpha = 0.5) + theme_light()
(Marko_LO %*% mu)/sqrt(Marko_LO %*% Sigma %*% Marko_LO) # IS SR
## [,1]
## [1,] 0.2814352
So much for diversification!
What if we impose diversification. For instance by
setting a strictly positive weight for all stocks… In the example below,
we ask for 1% of the portfolio at least in each firm.
b_zero <- c(1, rep(0.01, N))
Marko_LO <- solve.QP( # Long-only Markowitz
Dmat = Sigma,
dvec = mu,
Amat = t(A),
bvec = b_zero,
meq = 1 # only 1 equality = budget constraints.
)$solution
bind_cols(symbols, Marko_LO) %>%
ggplot(aes(x = Marko_LO, y = symbols)) + # Plot
geom_col(alpha = 0.5) + theme_light()
(Marko_LO %*% mu)/sqrt(Marko_LO %*% Sigma %*% Marko_LO) # IS SR
## [,1]
## [1,] 0.282648
Apple crushes the competition.
Backtesting portfolio strategies is usually simple at first, but becomes more intricate when many options are considered. To keep things simple, it is more efficient to work with functions. Functions help compartmentalise the different tasks of the process. We will build functions that compute portfolio weights and others that evaluate the performance metrics of the strategies. While we will usually work with a loop on backtesting dates, it is possible to build functions that directly generate portfolio returns (see below: the map() function).
By definition, a portfolio is a choice of weights that sum to one. Below, we implement two classical weighting schemes: the uniform portfolio (EW = equal weights) and the maximum Sharpe ratio portfolio (MSR). The latter is more complicated and requires inputs: namely the column vector of (expected) mean \(\mu\) and covariance matrix \(\Sigma\) of the assets. For simplicity, we will estimate them using sample moments - even though this is known to be a bad choice. This requires an additional argument in the function: the assets’ past returns. The MSR weights are \(w=\frac{\Sigma^{-1}\mu}{1'\Sigma^{-1}\mu}\). Both \(\mu\) and 1 are vectors here.
weights_msr <- function(returns){ # returns will refer to PAST returns
m <- colMeans(returns) # Vector of average returns
sigma <- cov(returns) # Covariance matrix
w <- solve(sigma) %*% m # Raw weights
return(w / sum(w)) # Returns normalised weights
}
weights_ew <- function(returns){ # We keep the same syntax for simplicity
N <- ncol(returns) # Number of assets
return(rep(1/N,N)) # Weight = 1/N
}
We are now ready to proceed with the initialisation of the variables that will use in the main loop.
sep_date <- as.Date("2010-01-01") # This date separates in-sample vs out-of-sample
t_oos <- t_all[t_all > sep_date] # Out-of-sample dates (i.e., testing set)
portf_weights <- matrix(0, nrow = length(t_oos), # Will store portfolio weights
ncol = length(symbols))
portf_returns <- c() # Initialize portfolio returns
At last, we can proceed to the main loop. A note of caution: both in the weighting scheme functions and in the loop below, we assume well defined (finite, i.e., non NA) data. Obviously, feeding NA data in the system will produce NA outputs. There are only four steps in the loop:
for(t in 1:length(t_oos)){
temp_data <- returns %>% filter(date < t_oos[t]) # 1) Extracting past data: expanding window!
portf_weights[t,] <- temp_data %>% # 2) Take this past data
select(-date) %>% # Take out the date column
na.omit() %>% # Remove missing points
weights_msr() # Appply the weighting scheme function
realised_returns <- returns %>% # 3) Take returns
filter(date == t_oos[t]) %>% # Keep only current date
select(-date) # Take out the date column
portf_returns[t] <- sum(portf_weights[t,] * realised_returns) # 4) Compute the return
}
In the above backtest, the amount of data considered to form the portfolio decision increases with time (expanding window). It is easy to fix the number of data point at each step and proceed on rolling windows (exercise). Likewise, switching from MSR to EW is immediate (just change the weighting function).
The main output is the vector of portfolio returns. We can easily plot the evolution of the portfolio through time.
port <- data.frame(date = t_oos,
portfolio = cumprod(1+portf_returns)) # Portf. values via cumulative product
port %>% ggplot() + theme_light() +
geom_line(aes(x = date, y = portfolio)) # Plot
Below, we create a function that takes a series of returns as input and provides a few simple performance metrics.
perf_met <- function(returns){
avg_ret <- mean(returns, na.rm = T)*12 # Arithmetic mean
vol <- sd(returns, na.rm = T)*sqrt(12) # Volatility
Sharpe_ratio <- avg_ret / vol # Sharpe ratio
VaR_5 <- quantile(returns, 0.05) # Value-at-risk
met <- data.frame(avg_ret, vol, Sharpe_ratio, VaR_5) # Aggregation of all of this
rownames(met) <- "metrics"
return(met)
}
perf_met(portf_returns) # Let's test on the actual returns
## avg_ret vol Sharpe_ratio VaR_5
## metrics 0.1774365 0.2175875 0.8154721 -0.07412241
Note: the values are not annualised. The annualisation can be directly coded into the function. A heuristic way to proceed is to multiply average returns by 12 and volatilities by \(\sqrt{12}\) - though this omits the compounding effect. These simplifications are ok if they are used to compare strategies. The Value at Risk is nonetheless dependent on the return horizon and cannot be proxied so simply.
An important indicator is the turnover of the portfolio: it assesses asset rotation and thus impacts transaction costs. Simple turnover computes average absolute variation in portfolio weights: \(\text{Turn}=\frac{1}{T}\sum_{t=2}^T\sum_{n=1}^N|w_t^n-w_{t-1}^n|\). Full turnover takes into account the variation of the weights between rebalancing dates: \(\text{Turn}=\frac{1}{T}\sum_{t=2}^T\sum_{n=1}^N|w_t^n-w_{t-}^n|\), where \(t-\) is the time just before the rebalancing date.
turnover_simple <- function(weights, t_oos){
turn <- 0
for(t in 2:length(t_oos)){ # Loop on dates
turn <- turn + sum(abs(weights[t,] - weights[t-1,])) # Variation in weights
}
return(12*turn/(length(t_oos)-1)) # BEWARE: monthly value!
}
turnover_simple(portf_weights, t_oos) # Simple turnover!
## [1] 3.576248
Below, we switch to the full definition of the turnover. In this case, the variation in weights is adjusted because the weight prior to rebalancing have drifted.
turnover_full <- function(weights, asset_returns, t_oos){
turn <- 0
for(t in 2:length(t_oos)){
realised_returns <- returns %>% filter(date == t_oos[t]) %>% select(-date)
prior_weights <- weights[t-1,] * (1 + realised_returns) # Before rebalancing
turn <- turn + apply(abs(weights[t,] - prior_weights/sum(prior_weights)),1,sum)
}
return(12*turn/(length(t_oos)-1))
}
asset_returns <- returns %>% filter(date > sep_date) # Asset returns over the experiment
turnover_full(portf_weights, asset_returns, t_oos) # Real turnover
## [1] 5.282898
Note that the turnover is computed at the monthly frequency. The second value is always more realistic; in this case it is substantially higher compared to the simplified proxy. For the sake of compactness, the turnover should be included in the perf_met() function.
An important generalisation of the above framework is to consider more than one strategy. Comparisons are commonplace in the asset management industry: obviously, people look for the best strategy (according to particular goals, beliefs, and preferences). Below, we show how this can be handled. We will compare the two strategies that we mentionned above. First, we need to re-initiate the variables because their dimension will change (NOTE: an alternative route would be to work with lists).
Tt <- length(t_oos) # Nb of computation dates
# Avoid T because T = TRUE!
nb_port <- 2 # Nb of portfolios
portf_weights <- array(0, dim = c(Tt, nb_port, length(symbols))) # Store weights
portf_returns <- matrix(0, nrow = Tt, ncol = nb_port) # Store returns
Second, we embed all weighting schemes into one single function.
weights_multi <- function(returns, j){ # Strategies are indexed by j
if(j == 1){ # j = 1 => MSR
return(weights_msr(returns))
}
if(j == 2){ # j = 2 => EW
N <- length(returns[1,])
return(rep(1/N,N))
}
}
We decided to recode the EW strategy, but we could have used the weights_ew() function instead. Finally, the main loop is only marginally different from the single strategy loop.
for(t in 1:length(t_oos)){
temp_data <- returns %>%
filter(date < t_oos[t]) %>% # Same first step
select(-date)
realised_returns <- returns %>% # Same third step: returns
filter(date == t_oos[t]) %>%
select(-date)
for(j in 1:nb_port){ # This is the novelty: we loop on the strategies
portf_weights[t,j,] <- weights_multi(temp_data, j) # The weights' function is indexed by j
portf_returns[t,j] <- sum(portf_weights[t,j,] * realised_returns)
}
}
apply(portf_returns, 2, perf_met) %>% # Taking perf metrics
unlist() %>% # Flattening the list
matrix(nrow = 2, byrow = T) %>% # Ordering them
`colnames<-`(c("avg_ret", "vol", "SR", "VaR")) %>% # Adding column names
data.frame() # Converting to dataframe
## avg_ret vol SR VaR
## 1 0.1774365 0.2175875 0.8154721 -0.07412241
## 2 0.1091758 0.1358828 0.8034553 -0.05443078
apply(portf_weights, 2, turnover_simple, t_oos = t_oos) %>% unlist()
## [1] 3.576248 0.000000
We recall the order of strategies: MSR first (line) and EW second (line).
Again, turnover should (and will) be added to the performance metric function. Since uniform weights are constant, their simplified turnover is zero. In practice, that is not the case because weights evolve according to asset returns. The adjustment would imply only a small turnover.
There is a well-documented substantial difference between the two weigting schemes in terms of asset rotation. The MSR that we compute is clearly not competitive: even before transaction costs, its Sharpe ratio is smaller than that of the EW portfolio (see DeMiguel et al. (2009) for further evidence on the robustness of the EW portfolio).
Finally, we show how to bypass the loop over dates. While this is not useful on small datasets, it can save time on large databases because loops are notoriously time-consuming. Below, we show how to proceed with the map() function in the simple case with only one strategy.
# We create a function that will compute returns for each date:
port_map <- function(t_oos, returns, weight_func){ # Weighting function as argument!
temp_data <- returns %>% filter(date < t_oos) # Still expanding window...
portf_weights <- temp_data %>%
select(-date) %>%
weight_func()
realised_returns <- returns %>%
filter(date == t_oos) %>%
select(-date)
return(sum(portf_weights * realised_returns))
}
# the map() function does it all!
portf_returns <- t_oos %>% # The variable over which we loop
map(~port_map(.x,
returns = returns,
weight_func = weights_msr) # MSR weights
) %>% # Is sent to the map() function
unlist() # The output is flattened
perf_met(portf_returns) # Compute the perf metrics
## avg_ret vol Sharpe_ratio VaR_5
## metrics 0.1774365 0.2175875 0.8154721 -0.07412241
In this section, we start the chapter of strategies based on firm characteristics (features). As an illustration, we check a well-documented (though still controversial) anomaly: the size effect. We build two portfolios: in the first (resp. second) one, we invest in the firms that have a below (resp. above) median market capitalisation. The first portfolio will be a ‘small’ portfolio and the second one a ‘large’ one. Stocks are equally-weighted inside the portfolios.
First, we prepare the variables and define the weight function.
nb_port <- 2 # Nb of portfolios
portf_weights <- array(0, dim = c(Tt-1, nb_port, length(symbols))) # Where we store weights
portf_returns <- matrix(0, nrow = Tt-1, ncol = nb_port) # Where we store returns
weights_cap <- function(data,j){
# More general than before: we feed all the data, not just returns
m <- median(data$mkt_cap) # Compute the median market cap
n <- nrow(data) # Compute the number of assets
if(j == 1){return((data$mkt_cap < m)/n*2)} # Small cap
if(j == 2){return((data$mkt_cap > m)/n*2)} # Large cap
}
There will only be Tt-1 dates since we lose one because of the computation of future returns.
Second, we can launch the backtesting loop.
for(t in 2:length(t_oos)){
temp_data <- data %>% filter(date == t_oos[t-1]) # We keep the data of the previous date
for(j in 1:nb_port){ # We loop on the strategies
portf_weights[t-1,j,] <- weights_cap(temp_data, j) # The weights' function is indexed by j
realised_returns <- returns %>%
filter(date == t_oos[t]) %>% # Shift in the date
select(-date)
portf_returns[t-1,j] <- sum(portf_weights[t-1,j,] * realised_returns)
}
}
Third, we proceed to performance metrics.
apply(portf_returns, 2, perf_met) %>% # Taking perf metrics
unlist() %>% # Flattening the list
matrix(nrow = 2, byrow = T) %>% # Ordering them
`colnames<-`(c("avg_ret", "vol", "SR", "VaR")) %>% # Adding column names
data.frame() # Converting to dataframe
## avg_ret vol SR VaR
## 1 0.13142480 0.1464983 0.8971082 -0.05777850
## 2 0.09045546 0.1373620 0.6585188 -0.05916399
Small firms do indeed generate a higher level of performance! In order to reach this conclusion in a rigourous fashion, we would need to perform the same analysis on at least 1,000 stocks (ideally, more) and on 5 to 10 portfolio sorts (from very small firms to very large ones). Below, we check the weights of the portfolio on one particular date.
small <- portf_weights[2,1,] # t = 2, j = 1 (t_oos[2] = 2010-03-01, small firms)
large <- portf_weights[2,2,] # t = 2, j = 2 (t_oos[2] = 2010-03-01, large firms)
data.frame(small, large, row.names = symbols)
## small large
## AAPL 0.00000000 0.06666667
## BA 0.06666667 0.00000000
## BAC 0.00000000 0.06666667
## C 0.06666667 0.00000000
## CSCO 0.00000000 0.06666667
## CVS 0.06666667 0.00000000
## CVX 0.00000000 0.06666667
## D 0.06666667 0.00000000
## DIS 0.06666667 0.00000000
## F 0.06666667 0.00000000
## FDX 0.06666667 0.00000000
## GE 0.06666667 0.00000000
## HD 0.06666667 0.00000000
## IBM 0.00000000 0.06666667
## INTC 0.00000000 0.06666667
## JNJ 0.00000000 0.06666667
## JPM 0.00000000 0.06666667
## K 0.06666667 0.00000000
## LLY 0.06666667 0.00000000
## MCK 0.06666667 0.00000000
## MRK 0.06666667 0.00000000
## MSFT 0.00000000 0.06666667
## ORCL 0.06666667 0.00000000
## PFE 0.00000000 0.06666667
## PG 0.00000000 0.06666667
## T 0.00000000 0.06666667
## VZ 0.06666667 0.00000000
## WFC 0.00000000 0.06666667
## WMT 0.00000000 0.06666667
## XOM 0.00000000 0.06666667
Indeed, some stocks have zero weights and others 1/15.
Finally, let’s see how we could have coded those strategies using the tidyverse (and a lot of piping!).
data %>% filter(date > sep_date) %>% # Keep only the out-of-sample backtesting dates
group_by(symbol) %>% # Group by stock
mutate(f_return = dplyr::lead(return)) %>% # Compute forward (i.e., realised) return
na.omit() %>% # Take out NAs
group_by(date) %>% # Group by dates
mutate(mkt_cap_binary = mkt_cap < median(mkt_cap)) %>% # Compute median cap for each date
ungroup() %>%
group_by(mkt_cap_binary) %>% # Group by Mkt_Cap: small vs large
summarise(avg_return = mean(f_return),
vol = sd(f_return)) # Simple pivot table
## # A tibble: 2 × 3
## mkt_cap_binary avg_return vol
## <lgl> <dbl> <dbl>
## 1 FALSE 0.00795 0.0628
## 2 TRUE 0.0102 0.0738
It can be useful to see how often stocks switch from one family to another (from below median to above median or vice-versa). Below, we show a plot of Mkt_Cap, conditional on Mkt_Cap being above the current median.
data %>% group_by(date) %>% # Group by date
mutate(mkt_cap_median = median(mkt_cap)) %>% # Compute median cap for each date
filter(mkt_cap > mkt_cap_median) %>% # Keep only the large stocks
ggplot(aes(x = date, y = mkt_cap, color = symbol)) + # Plot
geom_line() + scale_y_log10() +
geom_line(aes(x = date, y = mkt_cap_median), color = "black")
# The black line shows the running median
The straight lines show the discontinuities: one stock being large at some point in time, then small and then large again. The straight lines show the periods when the stock was small. The black line shows the median capitalisation (in the sample). Finally, because we focus in the zone close to the median and impose an upper limit of 250B$, there are some missing points.
ESG investing has gained a lot of traction (see my
review paper: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715753).
In this section, we briefly explore this topic.
First, a glance at the data. Let’s look at the
distribution of CO2 intensity (from
Sustainalytics).
We must use a log-scale because the differences are pronounced.
data %>%
mutate(year = year(date),
co2_int = scope_1/revenue) %>%
ggplot(aes(x = co2_int, fill = as.factor(year))) +
geom_histogram() + labs(fill = "year") + theme_light() +
scale_x_log10()
Let’s continue with a “simple” piping flow that creates a compact dataset.
data_esg <- data %>%
mutate(year = year(date),
co2_int = scope_1/revenue) |>
na.omit() |>
filter(date > "2010-02-01") %>% # Data available after 2014-02-01
group_by(date) |>
mutate(int_score = ecdf(co2_int)(co2_int),
ESG_group = if_else(int_score > median(int_score, na.rm=T), "brown", "green")) |>
ungroup() |>
group_by(symbol) %>%
mutate(return = dplyr::lead(close)/close - 1) %>% # Forward return
ungroup()
data_esg
## # A tibble: 4,696 × 14
## date symbol close vol_1y mkt_cap p2b d2e revenue scope_1 return
## <date> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2010-02-28 AAPL 7.31 0.266 1.63e11 5.19 0 4.29e10 2.45e4 0.148
## 2 2010-02-28 BA 63.2 0.288 3.93e10 10.9 581. 6.83e10 5.79e5 0.150
## 3 2010-02-28 CSCO 24.3 0.287 1.26e11 3.28 26.6 3.61e10 5.26e4 0.0699
## 4 2010-02-28 CVS 33.8 0.271 4.54e10 1.25 31.2 9.82e10 1.57e5 0.0833
## 5 2010-02-28 CVX 72.3 0.166 1.54e11 1.68 11.4 1.67e11 6.08e7 0.0488
## 6 2010-02-28 D 38.0 0.131 2.32e10 2.08 158. 1.44e10 5.90e7 0.0821
## 7 2010-02-28 DIS 31.2 0.257 5.06e10 1.47 36.5 3.61e10 5.43e5 0.117
## 8 2010-02-28 F 10.5 1.28 3.04e10 2.44 4788. 1.16e11 1.5 e6 0.0707
## 9 2010-02-28 FDX 84.8 0.356 1.73e10 1.27 20.1 3.55e10 1.41e7 0.102
## 10 2010-02-28 GE 76.9 0.430 9.64e10 0.823 402. 1.54e11 2.70e6 0.133
## # ℹ 4,686 more rows
## # ℹ 4 more variables: year <dbl>, co2_int <dbl>, int_score <dbl>,
## # ESG_group <chr>
Based on this short dataset, let’s have a quick look at the perf of the 2 groups (high ESG versus low ESG).
data_esg %>%
na.omit() |>
group_by(date, ESG_group) %>%
summarise(return = mean(return, na.rm = T)) %>%
group_by(ESG_group) %>%
summarise(avg_return = 12*mean(return, na.rm = T), # Be careful with na.rm = T
vol = sqrt(12)*sd(return, na.rm = T),
SR = avg_return/vol)
## # A tibble: 2 × 4
## ESG_group avg_return vol SR
## <chr> <dbl> <dbl> <dbl>
## 1 brown 0.0877 0.131 0.671
## 2 green 0.128 0.135 0.947
Two conclusions:
1. High ESG does slightly better.
2. But the difference is not huge (t-stat => exercise!)
From individual annual returns: is there are pattern?
data_esg %>%
group_by(year, symbol) %>%
summarise(avg_int = mean(int_score, na.rm = T),
avg_return = mean(return, na.rm = T)) %>%
ggplot(aes(x = avg_int, y = avg_return)) + geom_point(alpha = 0.3) +
geom_smooth(method = "lm") + theme_light()
No pattern at all, it seems…
Let’s dig deeper and have a look at screening/selection intensity. We compute the average returns of firms that have ESG_rank above a given threshold. To do that, let’s make a function.
library(scales) # This will be used in the plot below to zoom on the values with special limits
ESG_impact <- function(level, data_esg){
data_esg %>%
filter(int_score > level) %>% # Filter to keep only the firms with ESG > level
pull(return) %>%
mean(na.rm = T)
}
level_int <- seq(0.1, 0.9, by = 0.1) # ESG_rank threshold
map_dbl(level_int, ESG_impact, data_esg = data_esg) # The raw result
## [1] 0.008228179 0.007404221 0.007398298 0.007602926 0.007295227 0.007692715
## [7] 0.007426928 0.006044294 0.005379577
level_int %>%
bind_cols(return = map_dbl(level_int, ESG_impact, data_esg = data_esg)) %>%
ggplot(aes(x = level_int, y = return)) + geom_col(alpha = 0.5) +
theme_light() #+ scale_y_continuous(limits=c(0.008,0.012), oob = rescale_none)
Overall, lower intensity selection seems promising indeed (but let’s not jump to general conclusions). Finally, let’s have a look at more homogeneous groups.
ESG_quant <- function(level, width, data_esg){ # A new function
data_esg %>%
filter(int_score > level - width/2,
int_score < level + width/2) %>% # Filter to keep firms with ESG around level
pull(return) %>%
mean(na.rm = T)
}
level_esg <- quantile(data_esg$int_score, seq(0.1,0.9, by = 0.1))
level_esg %>%
bind_cols(return = map_dbl(level_esg, ESG_quant, width = 0.1, data_esg = data_esg)) %>%
ggplot(aes(x = level_esg, y = return)) + geom_col(alpha = 0.5) +
theme_light() #+ scale_y_continuous(limits=c(0.007,0.0125), oob = rescale_none)
## New names:
## • `` -> `...1`
The effect is not monotonic: things are not that simple…
Change the main loop so that only 60 points of data are given to the weighting scheme(s). Sixty points amount to 5 years of monthly data.
Using the PerformanceAnalytics package (install it first!), compute the maximum drawdown via: https://www.rdocumentation.org/packages/PerformanceAnalytics/versions/1.5.2/topics/maxDrawdown
Compute the transaction cost-adjusted SR: \(TC-SR=(\bar{r}-0.005*Turn)/\sigma\).
Add both metrics to the perf_met() function.
Add the MV portfolio to the set of strategies. The weights depend only on the covariance matrix: \(w=\frac{\Sigma^{-1}1}{1'\Sigma^{-1}1}\).
Extend the map() syntax to the case with many strategies. BONUS: have a look at pmap()!
In practice, many saveguards are applied, if only to reduce turnover. One such example is box constraint: the weights in the portfolio must not lie above or below user-specified thresholds.
In minimum variance, it is possible to reduce leverage by shrinking the covariance matrix towards the identity functions: \[\Sigma^*=(1-\alpha) \Sigma^S+\alpha I,\] where \(\Sigma^S\) is the sample covariance matrix and \(I\) the identity matrix. As \(\alpha\) increases to 1, the weights converge to the equally-weighted portfolio.