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Feedback from grading

Important tips for next time - and all times!

▶ Work with notebooks! .Rmd or .qmd but not scripts (.R)!
▶ KNIT/RENDER your documents in HTML! (60%+ were not knitted/rendered) →

HTML is proof your code worked!
▶ Restart R and re-run your work before sending it: 20%+ of projects were not

reproducible.
▶ Do not use absolute paths: YourPC/Documents/EMLYON/Courses is only valid on

your computer!
▶ Advice 1: use the tidyverse more and loops less...
▶ Advice 2: ask chatGPT for inspiration and do something radically different (MA20

versus MA50 is really not original!)
▶ Advice 3: plot cumulative returns!
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Why this course?

Four core purposes for this course

▶ Gain knowledge and insights on some mainstream asset pricing results and methods
▶ Apply ML tools on financial datasets:

1. what are these tools?
2. why resort to them?
3. how to use them?

▶ Understand the weaknesses of ML applied to asset management: ML is not a
magic wand!1

▶ Improve your coding skills (in R + similar in Python ...!)

More broadly: ML culture/knowledge is more & more required in finance... both in buy
side and sell side jobs.
My goal: that you shine in interviews (& get the jobs you want)!

1see Lopez de Prado: The 10 Reasons Most Machine Learning Funds Fail
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What the course is not about

Other applications of ML in Finance

▶ Derivatives pricing & hedging
▶ Fraud detection
▶ Credit scoring

Related topics

▶ Alternative data use cases
▶ Deep mathematical developments in supervised learning + computer vision & CNN
▶ Algorithms in unsupervised/reinforcement learning
▶ NLP tools for finance (sentiment)
▶ ML for high frequency trading (order book dynamics)

If you like challenges: https://challengedata.ens.fr

We will focus on insights and applications for Factor Investing.
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Why now?

A favorable nexus

▶ Data availability (cross-section of stocks ∼1000, characteristics
∼100+, time points ∼100 + alt-data!) gives ML a favorable playground

▶ Computational power:
▶ Hardware: storage & processing speed almost limitless (all major players provide cloud

solutions: IBM, Google, Amazon, Microsoft + niche players)
▶ Software: easily accessible thanks to the private sector (ML libraries funded by Google

and Facebook) and to large academic research groups (INRIA, Stanford, UPenn etc.)
▶ Economic grounding: what this session is about. Computer scientists have

used finance as playing field for decades (data is readily available). Applied CS is not enough:
we need an economic/logical framing.

6 / 39



©GuillaumeCoqueret

supervised
learning
factor
investing

Layout of the course

Eight sessions

1. Introduction & foundations
2. Portfolio strategies in R
3. LASSO & sparse hedging
4. Data preparation, feature engineering, labelling
5. Decision trees & extensions
6. Neural networks
7. Tuning & validating
8. Extensions: SVM, ensemble learning, interpretability + bias & backtest

overfitting
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Within the sessions

How this is going to work

Two (possibly three) parts

1. Theory (slides): 25%-40%
2. Practice (notebooks): 40%-70%
3. Exercises / questions (notebooks): remaining time

+ course work (ML backtest project)

One major reference: www.mlfactor.com + course website
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References

Factor investing: the idea that (some) firm characteristics drive future profitability.

This topic is HUGE!

We refer to the monographs:

▶ Asset Management: A Systematic Approach to Factor Investing
by Andrew Ang

▶ Expected Returns: An Investor’s Guide to Harvesting Market
Rewards by Antti Ilmanen

An important article on the subject is:
... and the cross section of stock returns, by Harvey et al.

+ chapter 3 in the book which we’ll cover soon.
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One important contribution

Fama French (1992)

Monthly portfolio sorts

The process is the following:
▶ Each month, assets (stocks) are sorted according to one (or two) of their

characteristics (cap = size, B/M ratio, past return, etc.)
▶ Portfolios are constituted according to these sorts (e.g., quintile or decile portfolios).

The allocation is usually cap-weighted or equally-weighted
▶ The performance of the portfolio is recorded for the month ahead, and then the

portfolio composition is updated based on the new (current) values of the
characteristics

▶ the corresponding vectors of returns can be analysed (average means, t-tests)
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The results

Source: Fama French (1992).
The figures are equal to the average monthly returns of the EW-portfolios, in percent.

The first row and first column show the trends!
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One step further: “risk factors”

Inspiration: Fama French (1993)

Long-short portfolios

▶ Suppose you form one portfolio that is long small firms and short big firms (SMB) and
one portfolio that is long firms with high B/M ratio and short firms with low B/M ratio
(HML).

▶ Then, you can use these (dollar-neutral) portfolios to analyse/decompose the returns
of individual asset or portfolios via a linear regression:

r i
t − r f

t = α+ βM(rM
t − r f

t ) + βSMBrSMB
t + βHMLrHML

t + ϵt

βM is the exposure to the market, βSMB and βHML are those to the corresponding
factors and α is the performance that cannot be explained by these 3 components.

The SMB factor is referred to as the Size factor and the HML one is the Value (vs Growth)
factor.
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More generally...
Academics and practitioners have tried to introduce new factors (i.e., based on new characteristics)
in the game.

The most classical ones:
▶ the Momentum factor: the attribute here is the return between one year ago and last month

(Winners minus Losers WML).
▶ the Low-Vol factor: the attribute is the volatility! (see also: low idioysinc. vol, low beta, BAB:

Betting Against Beta)
▶ the Profitability factor (operating profitability: Robust Minus Weak profits) - RMW from Fama

French (2015)
▶ the Investment factor (change in total asset: Conservative Minus Aggressive) - CMA also from

Fama French (2015)
▶ the Quality factor (a mix!): Quality minus Junk - QMJ from Asness et al (2019)

Original factors look at the names of companies, or the number of marathons ran by the CEO! →
economic relevance?
Nowadays, people investigate the green factor (ESG-based).
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Identification: how to proceed?
You have to be careful!

The usual steps:

1. identify a firm characteristic
2. form monthly portfolios according to x-percentiles of this characteristic (e.g. five

quintile portfolios or ten decile portfolios)
3. keep track of their returns over a sufficiently long period (>20Y)2

4. let’s say r+t and r−t are the returns associated with the top and bottom portfolios,
perform a t-test on the series r+t − r−t (or a test for the mean on the two series - taking the difference in
variance into consideration)

5. if the statistics is larger (in absolute value) to some threshold (2, 3?!), then you have
yourself a factor! (more or less)

The amount of caution in such empirical design should be extreme because results are
often the results of data-snooping / p-hacking. Robustness checks are compulsory!

2Hard for the ESG factors!
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Theoretical groundings

‘Factor investing’ can be viewed as a special case of APT.

The APT (Ross 1976)

▶ the asset return follows a linear model:

r j
t = αj + bj

1F 1
t + . . . bj

nF n
t + ϵj

t ,

▶ where the F k
t are n factors driving stock returns.

BUT! It can also be argued that it is the (raw) characteristics that matter (Daniel and
Titman (1997)).3 In an ML-driven approach, it will be easier to rely on firm attributes
(factors take time to compute and depend on many degrees of freedom). Also: for
predictive purposes, we will need to add a lag in the predictors (more on that later).
→ Factor analysis is nonetheless useful because it helps understand if one attribute is valuable.

3E.G.: firms with low market cap can load negatively on the size factor!
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Fama-MacBeth regressions (1/3)
For a modern view on anomaly detection, see Baker, Luo and Taliaferro (2018) and
Harvey Liu (2021).

Step one: cross-section of time-series regressions

We consider n asset returns rn,t and m factors f m
t . We start by estimating n equations,

each with m loadings (and a constant):

r1,t = α1 + β1
1F 1

t + · · ·+ βm
1 F m

t + ϵ1,t , t ∈ (1,T )

...

rn,t = αn + β1
nF 1

t + · · ·+ βm
n F m

t + ϵn,t , t ∈ (1,T )

This gives a matrix of loadings β̂ j
i ; i relates to asset and j to factor.

The β̂ j
i characterise the exposure of asset i to the factor j . The sign indicates the direction

of the co-movement and the associated t-stat indicates whether the relationship is
statistically significant.
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Fama-MacBeth regressions (2/3)

Technical side note: if we write, for a fixed t , rt = Ftβt + ϵt (including a constant factor),

Then the OLS estimator - assuming it is well defined - is:

β̂t = (F ′
t Ft)

−1F ′
t rt

which means that estimated coefficients are portfolio returns!
This is the spirit of the second part of the procedure.
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Fama-MacBeth regressions (3/3)
Step two: time-series of cross-sectional regressions

Given the β̂ j
i , estimate, for each date t ,

ri,1 = κ1 + γ1
1 β̂

1
i + · · ·+ γm

1 β̂m
i + ϵ1

i , i ∈ (1,n)
...

ri,T = κT + γ1
T β̂

1
i + · · ·+ γm

T β̂m
i + ϵT

i t , i ∈ (1,n)

This gives a matrix of estimated coefficients γ̂ j
t . The premium of factor j is estimated as

the average of the γ̂ j
t over all t = 1, . . . ,T . Assuming a large number of observations, the

classical t-stat is
tj =

1
T

∑T
t=1 γ̂

j
t

σ̂m/
√

T
,

where σ̂m is the standard deviation of the γ̂ j
t .

=> tells if the premium is strongly positive or negative in the long run!
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Factor competitions
Academics spend a LOT of time trying to figure out new factors - or ways to test if factors
are truly factors (inspired by Fama French 2015).

Singling out the best ones

We assume m factors F m
t . We run m regressions: each factor is regressed against all

other factors:

F 1
t = α1 +β1

2F 2
t + β1

3F 3
t + · · ·+ ϵ1

t

F 2
t = α2 + β2

1F 1
t + β2

3F 3
t + · · ·+ ϵ2

t

F 3
t = α3 + β3

1F 1
t +β3

2F 2
t + · · ·+ ϵ3

t

...

If the estimated α̂j is significantly different from zero, it means that factor j fails to be
explained by the other factors. If α̂j is not statistically different from zero, then is
redundant because it can be captured by exposures to the other factors.
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Other asset classes

Less clear...

It’s all a matter of specificities/characteristics

▶ Fixed income: credit rating, bond size & maturity, duration, convexity
▶ FX: country and liquidity risk
▶ Commodities: price-based only (includes futures)
▶ Exotic classes: real-estate, art, wine, crypto, NFTs ⇒ ???

Academic research is scarcer compared to equity. The framework and the empirical
results are not so well established.

A common factor across all classes is momentum (it only requires prices, which are most
of the time available).
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Where is it located? (1/2)
According to IBM...
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Where is it located? (2/2)
The way I see things (fewer colours).

...

... (SSL?)

Expert
Systems

Artificial Intelligence

Supervised
Learning

Machine Learning
Unsupervised

Learning

Neural networks
Neural networks
(others: AE, GAN)

Decision trees

SVM

Regressions

Clustering

Ensemble

Reinforcement
Learning

Natural Language Processing is related to several rounded rectangles.
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The AI paradigm shift

Expert vs Data

Also: symbolists vs connexionists.
▶ Expert systems (popular in the 1990s) are rule based (e.g.: if that then that)
▶ Given the complexity of tasks, rules quickly become too limited
▶ An alternative route is to consider massive amounts of data from which to learn

patterns (and hence infer rules)
→ connexionism (neural networks mostly)

François Chollet summarises this as:
▶ Expert system: Rules + Data → Answers
▶ Supervised Learning: Answers + Data → Rules

+ Reinforcement learning & unsupervised methods / SSL.
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How does supervized learning work? (1/2)

A primer

Consider a large dataset (e.g., rectangular). You want to be able to understand (and then
forecast) one column (y ) as a function of the others (x). You can always represent the
problem as follows:

yi = f
(
x1

i , x
2
i , . . . , x

n
i
)
+ ϵi ,

where i denotes the occurrence number and ϵi the related error. Two essential (and
related) questions in ML are:

1. How do I find/choose f?
2. Will the performance of my model (f ) change if I test it on new data?

(in unsupervised learning, the above expression does not hold: the machine learns on
its own because there is no y .)
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The link to asset management

Characteristics!
As we saw previously, the firms’ characteristics are likely to impact their future performance. This
impact is probably nonlinear and time-varying. A very flexible way to evaluate this impact is to
consider the above model:

yi = f
(

x1
i , x

2
i , . . . , x

n
i

)
+ ϵi ,

where y is a proxy for future performance (many choices are possible, e.g., horizon) and the x j are
a set of characteristics. The degrees of freedom are numerous; a shortlist:

1. the set of characteristics

2. the investment set (data availability)

3. the family of functions f : which ML tool?

4. data preprocessing: labelling and feature engineering

In short: factors (characteristics) ↔ features (inputs)!
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Example

The typical factor dataset looks like that:

So, basically, the aim is to explain y = the forward return (i.e., predict the return) using x = the
other columns (the predictors)
NOTE: obviously, Tick and Date are not predictors...

30 / 39



©GuillaumeCoqueret

supervised
learning
factor
investing

How does supervized learning work? (2/2)

A primer

▶ Parametrising the model with the information at our disposal!
▶ Usually, f will depend on some parameters Θ.
▶ We define a ‘loss’ (or error) function L(yi , fΘ(xi)), often L(yi , fΘ(xi)) = (yi − fΘ(xi))

2 when
working with continuous variables.

▶ Machine Learning is simply finding

Θ∗ = argmin
Θ

N∑
i=1

L(yi , fΘ(xi)),

where i = 1, . . . ,N are the occurrence indices within the training sample.
▶ this ensures that the model values fΘ(xi) are as close as possible to the ‘true’/observed values

yi .

Sometimes, the parameters will not be numbers, but ‘architectural choices’, in which case they are
often referred to as hyper-parameters.
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ML 101: regressions
There are limitless choices for f .

One crucial building block!
▶ The simplest one is the linear form:

f (xi) = β0 +
K∑

k=1

βk x (k)
i

the parameters are the betas and are usually estimated via OLS.
▶ Some ideas driving the regression are also behind more elaborate nonlinear tools (decision

trees and neural networks).
▶ For more complex models, there are no closed-forms for the optimal parameters Θ.
▶ Often, the optimal solution can be iteratively approximated using gradient methods for

instance.
▶ In other situations, hyper-parameter tuning will required some level of expertise.
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Predictive regressions?

In a factor context
Suppose you have identified ‘factors’ f k (not necessarily L/S portfolios) that are likely to
drive future performance. As an investor, you want to be able to predict this performance.
Let’s call it r for simplicity (→ return!).
One very simple way to proceed is to estimate:

rt = α+ β1f 1
t−1 + · · ·+ βnf n

t−1 + ϵt

with data from the past up to the last know rt . At time t , the f j
t are known, thus, the

conditional expectation (i.e., the forecast) is:

r̂t+1 = E[rt+1|ft ] = α̂+ β̂1f 1
t + · · ·+ β̂n

t f n
t
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Better: predictive panels!

In fact... does the cross-section of stocks matter?
Another way to look at it is:

rt+1,n = a +
K∑

k=1

b(k)x (k)
t,n + ut+1,n,

the double index in time t and firm n calls for panel-like estimations.
NOTE: a, b(k) do not depend on t and n. The characteristics x (k)

t,n depend on everything. For
technical reasons, we can decompose the error as

rt+1,n =
K∑

k=1

b(k)x (k)
t,n + µn + et+1,n,

where µn is an average firm-specific term. In this case, the constant a disappears.4

Factor models that rely on ML are simply generalizations of this model to non-linear and
possibly penalized relationships.

4For more on that, see Panel data econometrics in R: The plm package
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Key takeaways (1/2)

Characteristics5

▶ academic research finds that characteristics/factors help understand/predict future
returns

▶ there is no real consensus, except on a very small group of key features and the
devil can be in the details6 and in time variation!

▶ the foundation of our approach is very agnostic: characteristics drive profitability, but
we do not necessarily know which ones, and if the relationships are stable through
time (risk premia are notoriously time-varying)

▶ but we keep in mind that the inputs should make sense economically
(first letters of firm names?)

5See Daniel & Titman (1997)
6Asness & Frazzini (2013)
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Key takeaways (2/2)

Factors

▶ there are several ways to define and quantify an asset pricing
factor/anomaly and test can help extract the variables that truly matter

▶ machine learning tools are expected to sort out the factors/features
that matter agnostically (which has some pros & cons) - even if the choice

of inputs can/should be economically motivated (brute force data mining is not the best option)

▶ nonetheless, expert guidance will probably improve results
out-of-sample

▶ practice is key → train models & train yourselves!
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Thank you for your attention

Any questions?
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